Topic Review
Electrodialysis Bipolar Membrane for Reverse-Osmosis Concentrate Recovery
Electrochemical processes such as electrodialysis (ED) and electrodialysis bipolar membrane (EDBM) can contribute to soft-water production and the evaluation of waste fluxes. EDBM is a new technology that combines the separation function of electrodialysis with water separation at the bipolar membrane interface, which can convert salts into corresponding acids and bases without adding external components. In this system, anions and cations are separated from wastewater separately and combined with H+ and OH− ions via bipolar membranes to form acidic and alkaline solutions.
  • 950
  • 14 Jan 2022
Topic Review
Zero Liquid Discharge System for the Tannery Industry
The tannery industry is characterized by the consumption of a large quantity of water, around 30–40 m3 for processing 1000 kg of hide or skin. This amount becomes wastewater, containing about 300 kg of different chemicals, mainly refractory organic compounds, with high chemical oxygen demand (COD), total dissolved salts (TDS), chromium, and evolution of toxic gases, such as ammonia and sulfides, etc. The remaining tanning chemicals are released as effluent having high resistance against biological degradation, becoming a serious environmental issue. The Zero Liquid Discharge (ZLD) system serves to ensure zero water emission, as well as treatment facilities by recycling, recovery, and reuse of the treated wastewater using advanced cleanup technology. The international scenario shows the implementation of ZLD thanks to pressure from regulatory agencies. The ZLD system consists of a pre-treatment system with conventional physicochemical treatment, tertiary treatment, softening of the treated effluent, reverse osmosis (RO) treatment for desalination, and thermal evaporation of the saline reject from RO to separate the salts. By adopting this system, water consumption is reduced. Moreover, ZLD also becomes effective in disaster mitigation in areas where the tannery industry is a strong economic actor. 
  • 950
  • 27 Jun 2022
Topic Review
Martian Atmospheric Noble Gas Measurements
Martian Atmospheric Noble Gas Measurements refer to technologies to measure Martian atmospheric noble gases in situ by entry probes and in laboratory in Martian meteorites.  
  • 948
  • 02 Dec 2020
Topic Review
Coquina
Coquina (/koʊˈkiːnə/) is a sedimentary rock that is composed either wholly or almost entirely of the transported, abraded, and mechanically-sorted fragments of the shells of mollusks, trilobites, brachiopods, or other invertebrates. For a sediment to be considered to be a coquina, the particles composing it should average 2 mm (0.079 in) or greater in size. Coquina can vary in hardness from poorly to moderately cemented. Incompletely consolidated and poorly-cemented coquinas are considered grainstones in the Dunham classification system for carbonate sedimentary rocks. A well-cemented coquina is classified as a biosparite (fossiliferous limestone) according to the Folk classification of sedimentary rocks. Coquinas accumulate in high-energy marine and lacustrine environments where currents and waves result in the vigorous winnowing, abrasion, fracturing, and sorting of the shells that compose them. As a result, they typically exhibit well-developed bedding or cross-bedding, close packing, and good orientation of the shell fragments. The high-energy marine or lacustrine environments associated with coquinas include beaches, shallow submarine raised banks, swift tidal channels, and barrier bars.
  • 946
  • 10 Oct 2022
Topic Review
Core-Mantle Differentiation
Core-mantle differentiation is the set of processes that took place during the accretion stage of Earth's evolution (or more generally, of rocky planets) that results in the separation of iron-rich materials that eventually would conform a metal core, surrounded by a rocky mantle. According to the Safronov's model, protoplanets formed as the result of collisions of smaller bodies (planetesimals), which previously condensed from solid debris present in the original nebula. Planetesimals contained iron and silicates either already differentiated or mixed together. Either way, after impacting the Proto-Earth their materials very likely became homogenized. At this stage, the Proto-Earth was probably the size of Mars. Next followed the separation and stratification of the Proto-Earth's constituents, chiefly driven by their density contrasts. Factors such as pressure, temperature, and impact bodies in the primordial magma ocean have been involved in the differentiation process. The differentiation process is driven by the higher density of iron compared to silicate rocks, but the lower melting point of the former constitutes an important factor. In fact, once iron has melted, differentiation can take place whether silicate rocks are completely melted or not. On the premises of these plausible scenarios, several models have been proposed to account for the core-mantle differentiation following the stage of nebular formation of the solar system. They can be summarized into three mechanisms: 1) Percolation of iron alloy through silicate crystals; 2) Separation of metal from rock in a primordial magma ocean; 3) Migration of iron diapirs or dikes through the mantle.
  • 945
  • 08 Nov 2022
Topic Review
Iron Silicides
Iron silicide minerals (Fe-Si group) are found in terrestrial and solar system samples. These minerals tend to be more common in extraterrestrial rocks such as meteorites, and their existence in terrestrial rocks is limited due to a requirement of extremely reducing conditions to promote their formation. Such extremely reducing conditions can be found in fulgurites, which are glasses formed as cloud-to-ground lightning heats and fuses sand, soil, or rock. 
  • 945
  • 19 Apr 2022
Topic Review
Health Impact of Drying Aral Sea: One Health
Once one of the largest saline lakes, the Aral Sea, was recognized as a significant environmental disaster as the water level decreased dramatically. Water level decrease increases water salinity, affecting biodiversity. Exposed lake beds become the source for fine dust picked up by the dust storms and spread across a long distance, affecting people’s health in surrounding areas. 
  • 946
  • 13 Apr 2022
Topic Review
Waste Tire Management Practice
Montenegro faces serious challenges in terms of waste tire management. The financial and economic justification of the implementation of the first phase of the project of collection, takeover and transport, sorting, and storage of waste tires from the three municipalities in Montenegro.
  • 946
  • 08 Oct 2022
Topic Review
Tungurahua Volcano (Ecuador)
Since April of 2015, the ash dispersion and ash fallout due to Vulcanian eruptions at Tungurahua, one of the most active volcanoes in Ecuador, have been forecasted daily. For this purpose, our forecasting system uses the meteorological Weather Research and Forecasting (WRF) and the FALL3D models. Previously, and based on field data, laboratory, and numerical studies, corresponding eruption source parameters (ESP) have been defined. We analyzed the historically forecasted results of the ash fallout quantities over four years (April 2015 to March 2019), in order to obtain the average isomass and probability maps for three-month periods: February–March–April (FMA), May–June–July (MJJ), August–September–October (ASO), and November–December–January (NDJ). Our results indicate similar ash fallout shapes during MJJ and ASO, with a clear and defined tendency toward the west of the volcano; this tendency is less defined during NDJ and FMA. The proximal region west of the volcano (about 100 km to the west) has the highest probability (>70%) of being affected by ash fallout. The distant region to the west (more than 100 km west) presented low to medium probabilities (10%–70%) of ash fallout. The cities of Guaranda (W, 60% to 90%), Riobamba (SW, 70%), and Ambato (NW, 50% to 60%) have the highest probabilities of being affected by ash fallout. Among the large Ecuadorian cities, Guayaquil (SW, 10% to 30%) has low probability, and Quito (N, ≤5%) and Cuenca (SSE, <5%) have very low probabilities of being affected by ash fallout. High ash clouds can move in different directions, compared to wind transport near the surface. Therefore, it is possible to detect ash clouds by remote sensing which, in Ecuador, is limited to the layers over the meteorological clouds, which move in a different direction than low wind; the latter produces ash fallout over regions in different directions compared to the detected ash clouds. In addition to the isomass/probability maps and detected ash clouds, forecasting is permanently required in Ecuador.
  • 944
  • 21 Aug 2020
Topic Review
Measuring Urban Shrinkage
Most of the shrinking cities experience an unbalanced de-urbanization across different urban areas in cities. However, traditional ways of measuring urban shrinkage are focused on tracking population loss at the city level and are unable to capture the spatially heterogeneous shrinking patterns inside a city. Consequently, the spatial mechanism and patterns of urban shrinkage inside a city remain less understood, which is unhelpful for developing accommodation strategies for shrinkage. The smart city initiatives and practices have provided a rich pool of geospatial big data resources and technologies to tackle the complexity of urban systems. Given this context, we propose a new measure for the delineation of shrinking areas within cities by introducing a new concept of functional urban shrinkage, which aims to capture the mismatch between urban built-up areas and the areas where significantly intensive human activities take place. Taking advantage of a data fusion approach to integrating multi-source geospatial big data and survey data, a general analytical framework is developed to construct functional shrinkage measures. Combining geospatial big data with urban land-use functions obtained from land surveys and Points-Of-Interests data, the framework further enables the comparison between cities from dimensions characterized by indices of spatial and urban functional characteristics and the landscape fragmentation; thus, it has the capacity to facilitate an in-depth investigation of fundamental causes and internal mechanisms of urban shrinkage. 
  • 943
  • 05 Nov 2020
  • Page
  • of
  • 270
Video Production Service