You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
UV-C Irradiation
Amongst the surface treatment technologies to emerge in the last few decades, UV-C radiation surface treatment is widely used in food process industries for the purpose of shelf life elongation, bacterial inactivation, and stimulation.
  • 1.8K
  • 21 Jun 2022
Topic Review
Waste Energy Recovery in Internal Combustion Engines
Waste Heat Recovery (WHR) is a very interesting opportunity since almost two-thirds of fuel energy is not converted into mechanically useful energy. Moreover, the integration with other thermal streams on board (cooling and lubricating mediums, EGR cooling) can add further value to the recovery opportunity as well as the concept of managing the engine thermal management which can produce a sensible contribution that is appreciated mainly during urban driving. A huge scientific effort is underway, and a great expectation is perceptible. More generally, the technological options that can achieve a reduction in overall fuel consumption and, thus, the improvement of global engine efficiency, are the most valuable when they can be introduced without massive changes to the engine layout. This happens in all the energy applications in which Internal Combustion Engines (ICEs) are involved since the recovery unit can be introduced in the exhaust line. The mechanical energy recovered can be easily transformed into electrical energy, so represents an interesting integration with the hybrid propulsion powertrains. 
  • 1.8K
  • 04 May 2023
Topic Review
Development and Application of Underground Intelligent Load-Haul-Dump Vehicle
Load-haul-dump vehicle (LHD) is an important and necessary piece of mining equipment, which plays a key role in the transportation of underground ores. Traditional LHD vehicles usually complete ore shoveling, transporting and unloading through manual operation.
  • 1.8K
  • 27 Sep 2022
Topic Review
Nanoencapsulated Phase-Change Materials
Phase-change materials (PCMs) are becoming more widely acknowledged as essential elements in thermal energy storage, greatly aiding the pursuit of lower building energy consumption and the achievement of net-zero energy goals. PCMs are frequently constrained by their subpar heat conductivity, despite their expanding importance. 
  • 1.8K
  • 30 Nov 2023
Topic Review
Industry Guidance on Pipeline Integrity Management
For operators of oil and gas to save the cost of unforeseen events and risks, and to avoid unnecessary shutdowns, there is a need to have an effective subsea pipeline integrity management system. Currently a large number of subsea pipelines around the globe have already exceeded their design lives; nevertheless, they are still being operated safely, effectively and with diligent consideration towards Environmental, Health and Safety regulations, as well as international standards and best practices. In addition, many older flowlines have no permanent pigging facilities due to various design and operational limitations. For the unpiggable pipeline, the vast majority of the oil and gas operators use different inspection and monitoring techniques to provide essential integrity management data such as product chemistry, cathodic protection, electrical resistance probes and coupons, etc. However, translating such essential integrity management data into meaningful information to make crucial integrity-based decisions can be challenging.
  • 1.8K
  • 10 Jan 2023
Topic Review
Real Driving Emissions
Air pollution caused by vehicle emissions has raised serious public health concerns. Vehicle emissions generally depend on many factors, such as the nature of the vehicle, driving style, traffic conditions, emission control technologies, and operational conditions. Concerns about the certification cycles used by various regulatory authorities are growing due to the difference in emission during certification procedure and Real Driving Emissions (RDE). Under laboratory conditions, certification tests are performed in a ‘chassis dynamometer’ for light-duty vehicles (LDVs) and an ‘engine dynamometer’ for heavy-duty vehicles (HDVs). As a result, the test drive cycles used to measure the automotive emissions do not correctly reflect the vehicle’s real-world driving pattern. Consequently, the RDE regulation is being phased to reduce the disparity between type approval and vehicle’s real-world emissions. According to this review, different variables such as traffic signals, driving dynamics, congestions, altitude, ambient temperature, and so on have a major influence on actual driving pollution. Aside from that, cold-start and hot-start have been shown to affect on-road pollution. Contrary to common opinion, new technology such as start-stop systems boost automotive emissions rather than decreasing them owing to unfavourable conditions from the point of view of exhaust emissions and exhaust after-treatment systems. In addition, the driving dynamics are not represented in the current laboratory-based test procedures. As a result, it is critical to establish an on-road testing protocol to obtain a true representation of vehicular emissions and reduce emissions to a standard level. The incorporation of RDE clauses into certification procedures would have a positive impact on global air quality. 
  • 1.8K
  • 02 Aug 2021
Topic Review
Global Plastic Waste is Increasing
Global plastic waste is increasing rapidly. In general, densely populated regions generate tons of plastic waste daily, which is sometimes disposed of on land or diverged to sea. Most of the plastics created in the form of waste have complex degradation behavior and are non-biodegradable by nature. These remain intact in the environment for a long time span and potentially originate complications within terrestrial and marine life ecosystems. The strategic management of plastic waste and recycling can preserve environmental species and associated costs. 
  • 1.8K
  • 24 Sep 2021
Topic Review
Desiccant Technologies: An Overview of the Brazilian Scenario
This research assessed alternatives for air Heating, Ventilation, and Air Conditioning (HVAC) systems to minimize Sick Building Syndrome and improve air quality while considering international programs/standards. For this purpose, an alternative technology known as desiccant wheels was studied by analyzing their principles and types when the existing selection software for these types of equipment was performed. In addition, energy-efficiency programs worldwide and in the Brazilian context were analyzed while aiming at implementing strategies in which desiccant wheels are appropriate. Finally, some examples of commercial software for desiccant wheels were compared to identify the different tools available in the air conditioning market.
  • 1.8K
  • 17 Aug 2023
Topic Review
Vertical-Axis Wind Turbine
Basic equations for estimating the aerodynamic power captured by the Anderson vertical-axis wind turbine (AVAWT) are derived from a solution of Navier–Stokes (N–S) equations for a baroclinic inviscid flow. In a nutshell, the pressure difference across the AVAWT is derived from the Bernoulli’s equation—an upshot of the integration of the Euler’s momentum equation, which is the N–S momentum equation for a baroclinic inviscid flow. The resulting expression for the pressure difference across the AVAWT rotor is plotted as a function of the free-stream speed. Experimentally determined airstream speeds at the AVAWT inlet and outlet, coupled with corresponding free-stream speeds, are used in estimating the aerodynamic power captured. The aerodynamic power of the AVAWT is subsequently used in calculating its aerodynamic power coefficient. The actual power coefficient is calculated from the power generated by the AVAWT at various free-stream speeds and plotted as a function of the latter. Experimental results show that at all free-stream speeds and tip-speed ratios, the aerodynamic power coefficient of the AVAWT is higher than its actual power coefficient. Consequently, the power generated by the AVAWT prototype is lower than the aerodynamic power captured, given the same inflow wind conditions. Besides the foregoing, the main purpose of this experiment is to investigate the technical feasibility of the AVAWT. This proof of concept enables the inventor to commercialize the AVAWT.
  • 1.7K
  • 28 Oct 2020
Topic Review
Wave Energy Generation in Brazil
Seas and oceans offer great potential as a widely available source of clean and renewable energy near high energy consumption centers. This source of energy is a valuable option in the energy transition and in energy matrix decarbonization. Wave energy and an oscillating water column (OWC) device stand out as the types of ocean energy with the most potential. An onshore OWC requires locations with rocky outcrops and steeper slopes as the device needs to be physically installed and has lower energy dissipation due to friction with the seabed. However, Brazil has approximately 7490 km of coastlines, with various shoreline geometries and geomorphologies, some of which are very suitable for OWC implementation.
  • 1.7K
  • 27 Oct 2023
Topic Review
COVID-19 Spread Faster with HVAC
Droplets and aerosolized viral particles expelling from the body through coughing or sneezing and it is spreading to nearby surroundings. CFD model has been developed to simulate the air flow and the transport and dispersion of the aerosolized viral particles and fine droplets suspended in the air particles through the office. The study presents two cases involving the spreading limits and pathways of the aerosolized viral particles and fine droplets suspended in the air in a place; without and with air conditioning unit. The results showed that the use of air conditioning systems can increase the chances of spreading COVID-19 virus infection. The air-conditioning unit recirculates the same air inside a room, and this has the potential to create a virus-laden environment. Air circulation indoors such as using air conditioning units should be avoided in closed places. Existing ventilation systems should be expanded to include extraction and air filtration systems and/or germicidal, ultraviolet light. Also, opening a window can help bring in fresh air from the outside and disperse stale air inside, and that could help reduce the possibility of the spread of the virus particles in the closed place. Lastly, crowds of people in closed public places should be avoided (HVAC: Heating, ventilation, and air conditioning).
  • 1.7K
  • 17 Feb 2021
Topic Review
The CFD Modeling of Solar Dish System
Computational fluid dynamics (CFD) is a powerful numerical analysis approach in solving various engineering and environment problems. It is a simulation technique that uses numerical equations and digital computers for iterative methods to model and to predict various heat, mass, and momentum transfer and fluid flow problems for the optimization of designs. Concentrated solar power (CSP) is a promising technology for harnessing and utilizing a clean and sustainable source of energy. CSP consists of a solar concentrator that collects and intensifies the heat energy from the Sun and a solar receiver that converts the heat generated to produce electrical energy.
  • 1.7K
  • 13 May 2022
Topic Review
Arch-Dams’ Building Risk Reduction
The are thousands of large dams over the globe. The importance of dams is rapidly increasing due to the impact of climate change on increasing hydrological process variability and on water planning and management need. This study tackles a review for the concrete arch-dams’ design process, from a dual sustainability/safety management approach. On one hand, Sustainability is evaluated through a design optimization for dams´ stability and deformation analysis. On the other hand, safety is directly related to the reduction and consequences of failure risk. For that, several scenarios about stability and deformation, identifying desirable and undesirable actions, were estimated. More than 100 specific parameters regarding dam-reservoir-foundation-sediments system and their interactions have been collected. Also, a summary of mathematical modelling was made, and more than 100 references were summarized. The following consecutive steps, required to design engineering (why act), maintenance (when to act) and operations activities (how to act), were evaluated: individuation of hazards, definition of failure potential and estimation of consequences (harm to people, assets and environment). Results show that the area to model the dam–foundation interaction is around 3.0 Hd2, the system-damping ratio and vibration period is 8.5% and 0.39 s. Also, maximum elastic and elasto-plastic displacements are ~0.10–0.20 m. The failure probability for stability is 34%, whereas for deformation it is 29%
  • 1.7K
  • 30 Oct 2020
Topic Review
Homogeneous charge compression ignition (HCCI)
Homogeneous charge compression ignition (HCCI) is considered an advanced combustion method for internal combustion engines that offers simultaneous reductions in oxides of nitrogen (NOx) emissions and increased fuel efficiency. The present study examines the influence of intake air temperature (IAT) and premixed diesel fuel on fuel self-ignition characteristics in a light-duty compression ignition engine. Partial HCCI was achieved by port injection of the diesel fuel through air-assisted injection while sustaining direct diesel fuel injection into the cylinder for initiating combustion. The self-ignition of diesel fuel under such a set-up was studied with variations in premixed ratios (0–0.60) and inlet temperatures (40–100 °C) under a constant 1600 rpm engine speed with 20 Nm load. 
  • 1.7K
  • 23 Aug 2021
Topic Review
Piezoelectric Energy Harvester Configuration
Mechanical vibrational energy, which is provided by continuous or discontinuous motion, is an infinite source of energy that may be found anywhere. This source may be utilized to generate electricity to replenish batteries or directly power electrical equipment thanks to energy harvesters. The new gadgets are based on the utilization of piezoelectric materials, which can transform vibrating mechanical energy into useable electrical energy owing to their intrinsic qualities. 
  • 1.7K
  • 15 Dec 2023
Topic Review
Industry 4.0 Concept in Railway Transportation
Industry 4.0 is a concept applied to many different industries and enterprises to make them more intelligent, dynamic, and flexible to meet the challenges of the highly dynamic global market.
  • 1.7K
  • 23 Nov 2023
Topic Review
Cooling Integrated, Solid Desiccant Systems
Compared with the traditional vapor-compression cooling system, the solid desiccant evaporative cooling system consumes less electricity, has no harmful refrigerant, controls air humidity effectively and maintains a high level of air quality. The hybrid system usually includes two main processes: the dehumidification process and the evaporative cooling process. The function of the dehumidification process is to remove the moisture, and the evaporative cooling process is responsible for handling the sensible heat of the air.
  • 1.7K
  • 13 Oct 2021
Topic Review
Polymer-Matrix Composites - Environmental Fatigue, Creep, Long-Term Durability
Polymer-matrix composites are widely used in engineering applications. Yet, environmental factors impact their macroscale fatigue and creep performances significantly, owing to several mechanisms acting at the microstructure level. Seawater, due to a combination of high salinity and pressures, low temperature and biotic media present, also contributes to the acceleration of fatigue and creep damage. Similarly, other liquid corrosive agents penetrate into cracks induced by cyclic loading and cause dissolution of the resin and breakage of interfacial bonds. UV radiation either increases the crosslinking density or scissions chains, embrittling the surface layer of a given matrix. Temperature cycles close to the glass transition damage the fibre–matrix interface, promoting microcracking and hindering fatigue and creep performance. The microbial and enzymatic degradation of biopolymers is also studied, with the former responsible for metabolising specific matrices and changing their microstructure and/or chemical composition. 
  • 1.7K
  • 07 Jul 2023
Topic Review
3D Printing to Produce BioComposite
Current environmental concerns have led to a search of more environmentally friendly manufacturing methods, thus, natural fibers have gained attention in the 3D printing industry to be used as biofilters along with thermoplastics. The utilization of natural fibers is very convenient as they are easily available, cost-effective, eco-friendly, and biodegradable. Using natural fibers rather than synthetic fibers in the production of the 3D printing filaments will reduces gas emissions associated with the production of the synthetic fibers that would add to the current pollution problem. As a matter of fact, natural fibers have a reinforcing effect on plastics. This review analyzes how the properties of the different types of polymers vary when natural fibers processed to produce filaments for 3D Printing are added. The results of using natural fibers for 3D Printing are presented in this study and appeared to be satisfactory, while a limited number of studies have reported some issues.
  • 1.7K
  • 13 May 2021
Topic Review
Rotary Desiccant-Based Air-Conditioning Systems
A rotary desiccant-based air-conditioning system is a heat-driven hybrid system which combines different technologies such as desiccant dehumidification, evaporative cooling, refrigeration, and regeneration. This system has an opportunity to utilize low-grade thermal energy obtained from the sun or other sources.
  • 1.7K
  • 03 Nov 2021
  • Page
  • of
  • 18
Academic Video Service