Your browser does not fully support modern features. Please upgrade for a smoother experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Molecular and Cellular Functions of S100A10
S100A10 (p11, annexin II light chain, calpactin light chain) is a multifunctional protein with a wide range of physiological activity. S100A10 is unique among the S100 family members of proteins since it does not bind to Ca2+, despite its sequence and structural similarity. 
  • 1.1K
  • 13 Oct 2023
Topic Review
RIF1 Links Replication Timing
Replication timing (RT) is a cellular program to coordinate initiation of DNA replication in all origins within the genome. RIF1 (replication timing regulatory factor 1) is a master regulator of RT in human cells. This role of RIF1 is associated with binding G4-quadruplexes and changes in 3D chromatin that may suppress origin activation over a long distance. 
  • 1.1K
  • 01 Nov 2021
Topic Review
Aloperine
Aloperine is an alkaloid found in the seeds and leaves of the medicinal plant Sophora alopecuroides L. It has been used as herbal medicine in China for centuries due to its potent anti-inflammatory, antioxidant, antibacterial, and antiviral properties. Recently, aloperine has been widely investigated for its therapeutic activities. Aloperine is proven to be an effective therapeutic agent against many human pathological conditions, including cancer, viral diseases, and cardiovascular and inflammatory disorders. Aloperine is reported to exert therapeutic effects through triggering various biological processes, including cell cycle arrest, apoptosis, autophagy, suppressing cell migration, and invasion. It has also been found to be associated with the modulation of various signaling pathways in different diseases.
  • 1.1K
  • 05 May 2022
Topic Review
Farnesoid X Receptor
Farnesoid X receptor (FXR) has a central role in Bile Acids (BA) homeostasis and recent publications revealed that changes in autophagy due to BA-induced reactive oxygen species and increased anti-oxidant response via nuclear factor E2-related factor 2 (NRF2), result in dysregulation of FXR signaling. Several mechanistic studies have identified new dysfunctions of the cholestatic liver at cellular and molecular level, opening new venues for developing more performant therapies.
  • 1.1K
  • 12 Oct 2021
Topic Review
MSC-Derived Secretome in Parkinson’s Disease
       Mesenchymal stem cell (MSC)-derived secretome demonstrated therapeutic effects like those reported after MSCs transplantation. MSC-derived secretome may avoid various side effects of MSC-based therapy, comprising undesirable differentiation of engrafted MSCs and potential activation of the allogeneic immune response. MSC-derived secretome comprises soluble factors and encapsulated extravesicles (EVs). MSC-derived EVs comprise microvesicles, apoptotic bodies, and exosomes. In this review, we focus on the recent insights into the effects of MSC-derived secretome in Parkinson’s disease (PD). In particular, MSC-derived secretome and exosomal components counteracted neuroinflammation and enhanced antioxidant capacity and neurotrophic factors expression. In light of the insights reported in this review, MSC-derived secretome or their released exosomes may be used as a potential therapeutic approach or as adjuvant therapy to counteract the disease progression and improve PD symptoms. Also, MSC-derived secretome may be used as a vehicle in cell transplantation approaches to enhance the viability and survival of engrafted cells. Furthermore, since exosomes can cross the blood–brain barrier, they may be used as biomarkers of neural dysfunction. Further studies are necessary to fully characterize the bioactive molecules present in the secretome and to create a new, effective, cell-free therapeutic approach towards a robust clinical outcome for PD patients.
  • 1.1K
  • 28 Sep 2020
Topic Review
Circulating 16S RNA
The human body is inhabited by around trillions of microbes composing a multicomplex system, termed microbiota, which is strongly involved in the regulation and maintenance of homeostasis. Perturbations in microbiota composition can lead to dysbiosis, which has been associated with several human pathologies. The gold-standard method to explore microbial composition is next-generation sequencing, which involves the analysis of 16S rRNA, an indicator of the presence of specific microorganisms and the principal tool used in bacterial taxonomic classification. Indeed, the development of 16S RNA sequencing allows us to explore microbial composition within the human body, including fluids, since it has been detected in “germ-free” environments such as blood, plasma, and urine of diseased and healthy subjects. Recently, prokaryotes showed to generate extracellular vesicles, which are known to be responsible for shuttling different intracellular components such as proteins and nucleic acids (including 16S molecules) by protecting their cargo from degradation. These vesicles can be found in several human biofluids and can be exploited as tools for bacterial detection and identification.
  • 1.1K
  • 05 Jan 2022
Topic Review
Dendritic Cell-Based Approaches in Autoimmunity
Dendritic cells (DCs) dictate the outcomes of tissue-specific immune responses. DCs instruct T cells to respond to antigens (Ags), including self-Ags, leading to organ damage in the context of autoimmune diseases, or to becoming regulatory T cells (Tregs) promoting and perpetuating immune tolerance. DCs can acquire tolerogenic properties in vitro and in vivo in response to several stimuli, a feature that opens the possibility to generate or to target DCs to restore tolerance in autoimmune settings.
  • 1.1K
  • 09 Oct 2021
Topic Review
Oxidative Stress in Cancer Cells
Undue elevation of ROS levels commonly occurs during cancer evolution as a result of various antitumor therapeutics and/or endogenous immune response. Overwhelming ROS levels induced cancer cell death through the dysregulation of ROS-sensitive glycolytic enzymes, leading to the catastrophic depression of glycolysis and oxidative phosphorylation (OXPHOS), which are critical for cancer survival and progression. 
  • 1.1K
  • 25 Jul 2022
Topic Review
Plasmalogen Replacement Therapy
Plasmalogens, a subclass of glycerophospholipids containing a vinyl-ether bond, are one of the major components of biological membranes. Changes in plasmalogen content and molecular species have been reported in a variety of pathological conditions ranging from inherited to metabolic and degenerative diseases. Most of these diseases have no treatment, and attempts to develop a therapy have been focusing primarily on protein/nucleic acid molecular targets. However, recent studies have shifted attention to lipids as the basis of a therapeutic strategy. In these pathological conditions, the use of plasmalogen replacement therapy (PRT) has been shown to be a successful way to restore plasmalogen levels as well as to ameliorate the disease phenotype in different clinical settings.
  • 1.1K
  • 16 Nov 2021
Topic Review
Succinate Dehydrogenase and Cellular Energy Metabolism
Succinate dehydrogenase (SDH) is one of the enzymes of the tricarboxylic acid cycle (Krebs cycle) and complex II of the mitochondrial respiratory chain. Succinate dehydrogenase by pesticides (SDHIs) constitute a class of pesticides to fight against fungi. This represents roughly a dozen different molecules sharing the property to inhibit the succinate dehydrogenase (SDH), an enzyme implicated in carbon metabolism and cellular respiration.
  • 1.1K
  • 07 Mar 2023
Topic Review
Thirteen Potential TMPRSS2 Inhibitors
We identified a set of 13 approved or clinically investigational drugs with positively charged guanidinobenzoyl and/or aminidinobenzoyl groups, including the experimentally verified TMPRSS2 inhibitors Camostat and Nafamostat. Molecular docking suggested that the guanidinobenzoyl or aminidinobenzoyl group in all the drugs could form putative salt bridge interactions with the side-chain carboxyl group of Asp435 located in the S1 pocket of TMPRSS2. Molecular dynamics simulations further revealed the high stability of the putative salt bridge interactions over long-time simulations. These results suggest that the proposed compounds, in addition to Camostat and Nafamostat, could be effective TMPRSS2 inhibitors for COVID-19 treatment by occupying the S1 pocket with the hallmark positively charged groups.
  • 1.1K
  • 12 Jul 2021
Topic Review
Richter Syndrome
Richter syndrome (RS) represents the occurrence of an aggressive lymphoma, most commonly diffuse large B-cell lymphoma (DLBCL), in patients with chronic lymphocytic leukemia (CLL).
  • 1.1K
  • 03 Feb 2023
Topic Review
Methods of Increasing the Bioavailability of Polyphenols
Polyphenols, a class of bioactive compounds, including flavonoids, phenolic acids, and lignans, are commonly found in plant-based diets with a variety of biological actions, including antioxidant, anti-inflammatory, and anticancer effects. Unfortunately, polyphenols are not widely used in nutraceuticals since many of the chemicals in polyphenols possess poor oral bioavailability. Thankfully, polyphenols can be encapsulated and transported using bio-based nanocarriers, thereby increasing their bioavailability. Polyphenols’ limited water solubility and low bioavailability are limiting factors for their practical usage, but this issue can be resolved if suitable delivery vehicles are developed for encapsulating and delivering polyphenolic compounds.
  • 1.1K
  • 08 Sep 2023
Topic Review
The Biological Radicals
Past and present knowledge on the most important biological radicals, the superoxide radical anion and the nitrogen monoxide radical, are briefly compiled. The contribution covers the history of their detection, their enzymology, their physiological role and their detrimental effects, if they are produced in an unbalanced way. An in-depth understanding of their formation and metabolic fate is considered to improve our understanding of important biomedical problems such as host defense, blood circulation, inflammation and oxidative tissue damage.
  • 1.1K
  • 26 Jan 2021
Topic Review
Dietary Sugars and Diabetes Development from Mitochondrial Perspective
Type 2 diabetes (T2D) has increased worldwide at an alarming rate. Metabolic syndrome (MetS) is a major risk factor for T2D development. One of the main reasons for the abrupt rise in MetS incidence, besides a sedentary lifestyle, is the westernized diet consumption, with high content of industrialized foods, rich in added dietary sugars (DS), mainly sucrose and fructose. It has been suggested that a higher intake of DS could impair metabolic function, inducing MetS, and predisposing to T2D. However, it remains poorly explored how excessive DS intake modulates mitochondrial function, a key player in metabolism. 
  • 1.1K
  • 05 Dec 2022
Topic Review
Enzyme-Associated Pathogenesis Mechanisms of Alzheimer’s Disease
Alzheimer’s disease (AD) is the most common form of dementia. It increases the risk of other serious diseases and causes a huge impact on individuals, families, and socioeconomics. AD is a complex multifactorial disease, and current pharmacological therapies are largely based on the inhibition of enzymes involved in the pathogenesis of AD.
  • 1.1K
  • 04 May 2023
Topic Review
LRRK2, Rab GTPases and Parkinson’s Disease
Studies point to the involvement of endolysosomal defects in parkinson’s disease (PD). The endolysosomal system, which tightly controls a flow of endocytosed vesicles targeted either for degradation or recycling, is regulated by a number of Rab GTPases. Their associations with leucine-rich repeat kinase 2 (LRRK2), a major causative and risk protein of PD, has also been one of the hot topics in the field.
  • 1.1K
  • 19 Jan 2024
Topic Review
Ursolic Acid in Cancer and Diabetic Neuropathy Diseases
Ursolic acid (UA) is a promising triterpenoid compound present in several plants’ leaves, flowers, and fruits. It shows a broad range of pharmaceutical properties and therapeutic effects. UA has been utilized as a herbal medicine with excellent pharmacological activities.
  • 1.1K
  • 19 Nov 2021
Topic Review
Metabolic Reprogramming in Tumor Endothelial Cells
The dynamic crosstalk between the different components of the tumor microenvironment is critical to determine cancer progression, metastatic dissemination, tumor immunity, and therapeutic responses. Angiogenesis is critical for tumor growth, and abnormal blood vessels contribute to hypoxia and acidosis in the tumor microenvironment. In this hostile environment, cancer and stromal cells have the ability to alter their metabolism in order to support the high energetic demands and favor rapid tumor proliferation. 
  • 1.1K
  • 12 Oct 2022
Topic Review
Programmed DNA-Damage and Physiological DSBs
DNA double-strand breaks (DSBs) are well known for their deleterious effects. Improper repair of these breaks can result in mutations, translocations and even loss of genetic material, which can later lead to tumor formation and cancer progression. There are many exogenous agents that can cause DSBs. DSBs can also emerge due to replication stress activated by inhibition of DNA synthesis and/or activation of oncogenes. This review aims to summarize what is known about DNA damage in its physiological context. In addition, we will examine the advancements of the past several years, which have made an impact on the study of genome landscape and its organization. 
  • 1.1K
  • 30 Oct 2020
  • Page
  • of
  • 133
Academic Video Service