You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Bioactive Coatings
       In this entry, we compiled a variety of creative approaches to generate antimicrobial bioactive coatings. The benefits are very desirable: to create surfaces that either repel the attachment of viable microorganisms or kill microorganisms on contact without inducing inflammation or cytotoxicity to host tissues.        These coatings may consist of nanoparticles of pure elements (e.g. silver, copper, and zinc), sanitizing agents and disinfectants (e.g., quaternary ammonium ions and chlorhexidine), antibiotics (e.g., cefalotin, vancomycin, and gentamacin), or antimicrobial peptides (AMP).        Many bioactive coatings may involve unique delivery systems to direct their antimicrobial capacity against pathogens, but not commensals.  Coatings may also contain multiple antimicrobial substances to widen antimicrobial activity across multiple microbial species.
  • 1.9K
  • 26 Aug 2020
Topic Review
Lipid Bilayers on Silicon Substrates
Artificial membranes are models for biological systems that are important for several applications. In the present entry we talk about artificial membranes such as supported lipid bilayers (SLB) and ways to self- assemble them. We mainly focus on the results of a new dry evaporation process in high vacuum, i.e., physical vapor deposition, to make samples of dipalmitoylphosphatidylcholine (DPPC) on silicon substrates. We have characterized the main phase transitions and adhesion of our SLBs using high-resolution ellipsometry and AFM techniques. The finding of this new SLB fabrication approach is relevant for the understanding the interaction of lipid bilayers in contact with surfaces in dry environments, with the aim to develop new kinds of lab-on-chip bionanosensors. This discovery is especially relevant in the context of the viability of organisms covered with lipid bilayer structures. An example of this kind of interaction occurs between bilayer-protected viruses, e.g., corona viruses, and solid surfaces, allowing the virus to stay active during long periods of time. The prolonged stability of SLBs on dry SiO2/Si substrates detected in our research can explain the long-term stability of some viruses deposited or adsorbed on dry surfaces, including the SARS-CoV-2 virus. 
  • 1.9K
  • 03 Nov 2020
Topic Review
Smart Biogenic Packaging
Smart biogenic packaging is an innovative, swiftly emerging concept, where sustainability and real-time monitoring of food are coupled together, ensuring safe and healthy food, alongside commercial and ecological prosperity. Smart biogenic packaging integrates active and intelligent packaging solutions to provide consumers with more reliable information about food product conditions. It also generates a shielding effect for the food by incorporating active substances such as antimicrobial agents in a biogenic polymer matrix.
  • 1.9K
  • 15 Apr 2022
Topic Review
Application of Nanosheets in Nanomedicine
The term “nanosheets” has been coined recently to describe supported and free-standing “ultrathin film” materials, with thicknesses ranging from a single atomic layer to a few tens of nanometers. Owing to their physicochemical properties and their large surface area with abundant accessible active sites, nanosheets (NSHs) of inorganic materials such as Au, amorphous carbon, graphene, and boron nitride (BN) are considered ideal building blocks or scaffolds for a wide range of applications encompassing electronic and optical devices, membranes, drug delivery systems, and multimodal contrast agents, among others. In the specific case of nanomaterials applied to medicine (nanomedicine), this multidisciplinary field has captured the interest of researchers and engineers from different disciplines.
  • 1.9K
  • 08 Feb 2023
Topic Review
Carbon Dots
Carbon dots (CDs) are part of the nanocarbon family including quasi-spherical nanoparticles with sizes around 10 nm. They consist of amorphous and crystalline parts, mainly composed of carbon with a fringe spacing of 0.34 nm, which corresponds to the (002) interlayer spacing of graphite. Since their first discovery in 2006, CDs have gained ever-increasing attention due to their fascinating properties like distinctive optical behaviour, tunable emission, different functional groups, good biocompatibility, chemical and photo-stability, low toxicity, and low-cost production. More importantly, CDs properties can be changed by controlling their size, shape, and heteroatom doping and by modifying the surfaces. They are considered promising Green alternatives to traditional fluorescent dyes and have been proposed for different optoelectronic applications such as sensing, bioimaging, fingerprint detection, gene delivery, solar cells, or printing inks
  • 1.9K
  • 08 Mar 2021
Topic Review
Carbon-Based Conductive Inks
Researchers prepared composite conductive inks with high conductivity, high thermal conductivity, strong stability, and excellent comprehensive mechanical properties by combining carbon-based materials such as graphene and carbon nanotubes with metal-based materials. Through new electronic printing technologies, conductive inks can be used not only to promote the development of integrated circuits but also in various new electronic products. 
  • 1.9K
  • 27 Oct 2023
Topic Review
Electrospun Nanofiber-Based Membranes for Water Treatment
Electrospun nanofiber-based membranes (ENMs), benefitting from characteristics such as a higher specific surface area, higher porosity, lower thickness, and possession of attracted broad attention, has allowed it to evolve into a promising candidate rapidly. According to the roles of electrospun nanofiber layers, NMs can be divided into two categories: (i) nanofiber layer serving as a selective layer, (ii) nanofiber layer serving as supporting substrate.
  • 1.9K
  • 19 Sep 2022
Topic Review
Physical Vapor Deposition for Decorative Applications
Physical Vapor Deposition (PVD) is a widely utilized process in various industrial applications, serving as a protective and hard coating. However, its presence in fields like fashion has only recently emerged, as electroplating processes had previously dominated this reality. The future looks toward the replacement of the most hazardous and toxic electrochemical processes, especially those involving Cr(VI) and cyanide galvanic baths, which have been restricted by the European Union. Unfortunately, a complete substitution with PVD coatings is not feasible. The combination of both techniques is employed to achieve new aesthetic features, including a broader color range and diverse textures, rendering de facto PVD of primary interest for the decorative field and the fashion industry.
  • 1.8K
  • 22 Aug 2023
Topic Review
Joint-Design Strategies for Additive Manufacturing
Here, we aim to assess the current modelling and experimental achievements in the design for additive manufacturing of bonded joints, providing a summary of the current state of the art. To limit its scope, the document is focused only on polymeric additive manufacturing processes. As a result, this work contains a structured collection of the tailoring methods adopted for additively manufactured adherends and adhesives with the aim of maximizing bonded joint performance. 
  • 1.8K
  • 17 Sep 2020
Topic Review
Phenolic Compounds in Food Packaging
The use of phenolic-compound-based active-packaging and edible films/coatings with antimicrobial and antioxidant activities is an innovative approach that has gained widespread attention worldwide. As phenolic compounds are natural bioactive molecules that are present in a wide range of foods, such as fruits, vegetables, herbs, oils, spices, tea, chocolate, and wine, as well as agricultural waste and industrial byproducts, their utilization in the development of packaging materials can lead to improvements in the oxidative status and antimicrobial properties of food products.
  • 1.8K
  • 18 Nov 2022
Topic Review
Polyurea in Impact Penetration Resistance and Blast Mitigation
Polyurea has gained significant attention in recent years as a functional polymer material, specifically regarding blast and impact protection. The molecular structure of polyurea is characterized by the rapid reaction between isocyanate and the terminal amine component, and forms an elastomeric copolymer that enhances substrate protection against blast impact and fragmentation penetration. At the nanoscale, a phase-separated microstructure emerges, with dispersed hard segment microregions within a continuous matrix of soft segments. This unique microstructure contributes to the remarkable mechanical properties of polyurea. 
  • 1.8K
  • 11 Mar 2024
Topic Review
Molecularly Imprinted Polymer Layers
Molecular imprinting (MI) is the most available and known method to produce artificial recognition sites, similar to antibodies, inside or at the surface of a polymeric material.
  • 1.8K
  • 29 Mar 2022
Topic Review
Thin-Film Fabrication for Low-Temperature Solid Oxide Fuel Cells
Solid oxide fuel cells (SOFCs) are amongst the most widely used renewable alternative energy systems with near-zero carbon emission, high efficiency, and environment-friendly features. However, the high operating temperature of SOFCs is still considered a major challenge due to several issues regarding the materials’ corrosion, unwanted reactions between layers, etc. Thus, low-temperature SOFCs (LT-SOFCs) have gained significant interest during the past decades. Despite the numerous advantages of LT-SOFCs, material selection for each layer is of great importance as the common materials have not shown a desirable performance so far. In addition to the selection of the materials, fabrication techniques have a great influence on the properties of the SOFCs. As SOFCs with thinner layers showed lower polarisation resistance, especially in the electrolyte layer, different thin-film fabrication methods have been employed, and their effect on the overall performance of SOFCs has been evaluated.
  • 1.8K
  • 23 Aug 2023
Topic Review
Functional Treatments for Modified Wood
Wood modification has been defined by Hill as a process that “involves the action of a chemical, biological or physical agent upon the material, resulting in a desired property enhancement during the service life of the modified wood. The modified wood should itself be nontoxic under service conditions, and furthermore, there should be no release of any toxic substances during service, or at end of life, following disposal or recycling of the modified wood. If the modification is intended for improved resistance to biological attack, then the mode of action should be non-biocidal.”
  • 1.8K
  • 03 Jun 2021
Topic Review
Coatings Empowering Antiviral/Viricidal Properties
In the surge of the current, alarming scenario of SARS-CoV-2 infections, there is a immediate necessity for developing highly-innovative antiviral agents to work against the viruses with a broad spectrum of antiviral activity. Here-in, science-based methods, mechanisms, and procedures are implemented in obtaining resultant antiviral coated substrates, used in the destruction of the strains of the different viruses are presented. we pay particular attention to recent examples from the materials science and engineering field that highlight how some classes of antiviral drug candidates, such as polymeric materials, metal ions/metal oxides and functional nanomaterials result in acting against the viral spread. Based on the available literature and data, we also disclose some of the strategies for development of a universal and reusable virus deactivation system against the emerging COVID-19.
  • 1.8K
  • 25 Sep 2020
Topic Review
Membrane Shielding Materials for Electromagnetic/Radiation Contamination
As technology develops at a rapid pace, electromagnetic and radiation pollution have become significant issues. These forms of pollution can cause many important environmental issues. If they are not properly managed and addressed, they will be everywhere in the global biosphere, and they will have devastating impacts on human health. In addition to minimizing sources of electromagnetic radiation, the development of lightweight composite shielding materials to address interference from radiation has become an important area of research. A suitable shielding material can effectively reduce the harm caused by electromagnetic interference/radiation.
  • 1.7K
  • 22 Mar 2023
Topic Review
MDCs for Next-generation Optical Coatings
In Dielectric/Metal/Dielectric (DMD) type multilayer coating applications, it is very important to achieve simultaneously highly stable and durable optical properties together with accurate control over the apparent color properties of coated glass, in both reflection and transmission. In this encyclopedia entry, we report on the properties of RF magnetron co-sputtered metal-dielectric composite (MDC) material systems of interest for forward-looking applications in the areas of thin-film nanomaterials and optical coatings.
  • 1.7K
  • 02 Nov 2020
Topic Review
Electric Noise Spectroscopy
Electric noise spectroscopy is a non-destructive and a very sensitive method for studying the dynamic behaviors of the charge carriers and the kinetic processes in several condensed matter systems, with no limitation on operating temperatures. This technique has been extensively used to investigate several perovskite compounds, manganese oxides (La1−xSrxMnO3, La0.7Ba0.3MnO3, and Pr0.7Ca0.3MnO3), and a double perovskite (Sr2FeMoO6), whose properties have recently attracted great attention.
  • 1.7K
  • 22 Jan 2021
Topic Review
Coatings for Milling
This entry talks a little about the development and application of PVD and CVD coatings on machining tools.
  • 1.7K
  • 05 Nov 2020
Topic Review
Cold-Sprayed In718-Ni Composite Coating
The cold-spray technique was used to deposit Inconel 718–nickel (1:1) composite coatings on stainless steel substrate. A general full factorial design was adopted to identify the statistically significant operating variables, i.e., impingement angle, erodent size, and feed rate on the coating erosion response. Erodent feed rate, impingement angle, and the interaction between impingement angle and erodent size were identified as the highly significant variables on the erosion rate. Then, a model correlating the identified variables with the erosion rate was derived. The best combination of control variables for minimum erosion loss with respect to erodent feed rate, erodent size, and impingement angle was 2 mg/min, 60 µm, and 90°, respectively.
  • 1.7K
  • 02 Nov 2020
  • Page
  • of
  • 12
Academic Video Service