You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Lipids and Gut Microbiota Alterations
Advances in sequencing technologies over the past 15 years have led to a substantially greater appreciation of the importance of the gut microbiome to the health of the host. Recent outcomes indicate that aspects of nutrition, especially lipids (exogenous or endogenous), can influence the gut microbiota composition and consequently, play an important role in the metabolic health of the host. Thus, there is an increasing interest in applying holistic analytical approaches, such as lipidomics, metabolomics, (meta)transcriptomics, (meta)genomics, and (meta)proteomics, to thoroughly study the gut microbiota and any possible interplay with nutritional or endogenous components.
  • 1.5K
  • 21 Apr 2022
Topic Review
Tumor Endothelial Cell
Tumor progression relies on angiogenesis from established normal vasculature to form new tumor blood vessels. Tumor endothelial cells (TECs) in the tumor blood vessels maintain tumor vessel formation through continual angiogenesis. TECs are heterogeneous with a diverse cellular origin. Moreover, the various factors and conditions in the tumor microenvironment elicit specific characteristics in TECs differentiating them from endothelial cells in normal vessels. TECs are the main focus of antiangiogenesis strategies, and their unique features make tumor blood vessels good anti-cancer therapeutic targets.
  • 1.5K
  • 28 Oct 2020
Topic Review
MTOR Signaling in Cancer
The mammalian or mechanistic target of rapamycin (mTOR) pathway plays a crucial role in regulation of cell survival, metabolism, growth and protein synthesis in response to upstream signals in both normal physiological and pathological conditions, especially in cancer.
  • 1.5K
  • 21 Jan 2022
Topic Review
Arterial Hypertension and Tension-Type Headache
Arterial hypertension (AH) is a prevalent condition worldwide and is the key risk factor for non-fatal and fatal cardiovascular complications. Tension-type headache (TTH) is the most common type of primary headache and is considered a common everyday headache.
  • 1.5K
  • 11 Oct 2021
Topic Review
Klotho
Klotho was initially introduced as an antiaging molecule. Klotho deficiency significantly reduces lifespan, and its overexpression extends it and protects against various pathological phenotypes, especially renal disease. It was shown to regulate phosphate and calcium metabolism, protect against oxidative stress, downregulate apoptosis, and have antiinflammatory and antifibrotic properties.
  • 1.5K
  • 05 Mar 2021
Topic Review
Pygidial Glands
Predator community structure is an important selective element shaping the evolution of prey defence traits and strategies. Carabid beetles are one of the most diverse families of Coleoptera, and their success in terrestrial ecosystems is related to considerable morphological, physiological, and behavioural adaptations that provide protection against predators. Their most common form of defence is the chemical secretion from paired abdominal pygidial glands that produce a heterogeneous set of carboxylic acids, quinones, hydrocarbons, phenols, aldehydes, and esters. 
  • 1.5K
  • 25 Jun 2021
Topic Review
Nrf2-Keap1-ARE Signaling and IRI
Ischemia/reperfusion (I/R) injury is associated with substantial clinical implications, including a wide range of organs such as the brain, kidneys, lungs, heart, and many others. I/R injury (IRI) occurs due to the tissue injury following the reestablishment of blood supply to ischemic tissues, leading to enhanced aseptic inflammation and stimulation of oxidative stress via reactive oxygen and nitrogen species (ROS/RNS). Since ROS causes membrane lipids’ peroxidation, triggers loss of membrane integrity, denaturation of proteins, DNA damage, and cell death, oxidative stress plays a critical part in I/R pathogenesis. Therefore, ROS regulation could be a promising therapeutic strategy for IRI. In this context, Nrf2 (NF-E2-related factor 2) is a transcription factor that regulates the expression of several factors involved in the cellular defense against oxidative stress and inflammation, including heme oxygenase-1 (HO-1). 
  • 1.5K
  • 01 Jun 2021
Topic Review
DNA:RNA Hybrids in DNA Repair
During the past several years, an increasing number of obstacles to DNA-related transactions was found to similarly trigger DNA repair and tolerance mechanisms. Among them, RNA-containing structures have recently caught the attention of DNA biologists. These range from single ribonucleotide insertions to RNA stretches, DNA:RNA hybrids and R-loops, in which a single-stranded DNA is displaced. Such structures are observed in diverse species and represent a significant fraction of their genomes: for example, ribonucleotides are incorporated in newly synthesized DNA at an overall rate of ~1:1000 nucleotides and R-loops occupy approximately 5% of the human genome. It has become increasingly clear that these structures are relevant for genome integrity: on the one hand, genetic screens have highlighted the importance of RNA metabolism factors in the DNA damage response, and on the other hand, factors classically associated with DNA repair or genome maintenance handle RNA-containing substrates in vitro.
  • 1.5K
  • 28 Jun 2021
Topic Review
Wound Healing Material
Dermal wound healing describes the progressive repair and recalcitrant mechanism of damaged skin, and eventually, reformatting and reshaping the skin. Many probiotics, nutritional supplements, metal nanoparticles, composites, skin constructs, polymers, and so forth have been associated with the improved healing process of wounds. The exact mechanism of material-cellular interaction is a point of immense importance, particularly in pathological conditions such as diabetes. Bioengineered alternative agents will likely continue to dominate the outpatient and perioperative management of chronic, recalcitrant wounds as new products continue to cut costs and improve the wound healing process. 
  • 1.4K
  • 22 Sep 2021
Topic Review
The Non-Coding RNA Language
Complex organisms are associations of different cells that coexist and collaborate creating a living consortium, the holobiont. The relationships between the holobiont members are essential for a proper homeostasis of all the organisms and they are founded on the establishment of complex inter-connections between all the cells. Non-coding RNAs are transcriptional products of the genomic output with regulatory function and they can act as communication signals between cells, being involved either in homeostasis or dysbiosis of the holobiont. Eukaryotic and prokaryotic cells can transmit signals via non-coding RNAs using specific extracellular conveyors that will travel to reach the target cell and will be translated into a regulatory response by a dedicated molecular machinery. Within holobionts, non-coding RNA regulatory signaling is involved in symbiotic and pathogenic relationships among cells. This review analyzes the current knowledge about the role of non-coding RNAs in cell-to-cell communication, with a special focus in the signaling between cells in multi-organism consortia.
  • 1.4K
  • 28 Oct 2020
Topic Review
5-Oxo-Eicosatetraenoic Acid
5-Oxo-eicosatetraenoic acid (i.e. 5-oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid; also termed 5-oxo-ETE and 5-oxoETE) is a Nonclassic eicosanoid metabolite of arachidonic acid and the most potent naturally occurring member of the 5-HETE family of cell signaling agents. Like other cell signaling agents, 5-oxo-ETE is made by a cell and then feeds back to stimulate its parent cell (see Autocrine signaling) and/or exits this cell to stimulate nearby cells (see paracrine signaling). 5-Oxo-ETE can stimulate various cell types particularly human leukocytes but possesses its highest potency and power in stimulating the human eosinophil type of leukocyte. It is therefore suggested to be formed during and to be an important contributor to the formation and progression of eosinophil-based allergic reactions; it is also suggested that 5-oxo-ETE may also contribute inflammation, cancer cell growth, and other pathophysiological responses.
  • 1.4K
  • 30 Nov 2022
Topic Review
Transcription and RNA Editing in Plant Chloroplasts
RNA editing is generally perceived as a repair tool to correct genomic mutation (point mutation) at the transcript level in organelles such as mitochondria and chloroplasts.
  • 1.4K
  • 21 Nov 2022
Topic Review
Probe for Single-Molecule Fluorescence Microscopy
Probe choice in single-molecule microscopy requires deeper evaluations than those adopted for less sensitive fluorescence microscopy studies. Fluorophore characteristics can alter or hide subtle phenomena observable at the single-molecule level, wasting the potential of the sophisticated instrumentation and algorithms developed for this kind of advanced applications. The three typical groups of fluorophores are fluorescent proteins, organic dyes and quantum dots; here their advantages, drawbacks and use in single-molecule microscopy are discussed. Some requirements are common to all applications, such as high brightness and photostability, specific and efficient labeling, controlled stoichiometry, no perturbation on the system. Other requirements depend on the specific type of single-molecule technique; some of them are here described with their specific requirements for probe choice.
  • 1.4K
  • 13 Feb 2023
Topic Review
Non-Amyloidbeta-Tau Biomarkers
Core biomarkers amyloid beta (Aβ) and Tau have been considered as key neuropathological hallmarks of Alzheimer's disease. However, they did not sufficiently reflect clinical severity and therapeutic response, proving the difficulty of the Aβ- and Tau-targeting therapies in clinical trials. Along with these core biomarkers, non-Amyloidbeta-Tau pathophysiological biomarkers (Neurodegeneration-related biomarkers, biomarkers for neuroinflammation and phagocytosis of an innate immune system, lipid metabolism biomarkers) could serve as advanced reporters for early diagnosing AD, predicting AD progression, and monitoring the treatment response.
  • 1.4K
  • 18 Nov 2020
Topic Review
CUT Domain Proteins in Cancer
Recent studies revealed that CUT domains function as accessory factors that accelerate DNA repair by stimulating the enzymatic activities of the base excision repair enzymes OGG1, APE1, and DNA pol β. Strikingly, the role of CUT domain proteins in DNA repair is exploited by cancer cells to facilitate their survival. Cancer cells in which the RAS pathway is activated produce an excess of reactive oxygen species (ROS) which, if not counterbalanced by increased production of antioxidants, causes sustained oxidative DNA damage and, ultimately, cell senescence. These cancer cells can adapt by increasing their capacity to repair oxidative DNA damage in part through elevated expression of CUT domain proteins such as CUX1, CUX2, or SATB1. In particular, CUX1 overexpression was shown to cooperate with RAS in the formation of mammary and lung tumors in mice. Conversely, knockdown of CUX1, CUX2, or SATB1 was found to be synthetic lethal in cancer cells exhibiting high ROS levels as a consequence of activating mutations in KRAS, HRAS, BRAF, or EGFR. Importantly, as a byproduct of their adaptation, cancer cells that overexpress CUT domain proteins exhibit increased resistance to genotoxic treatments such as ionizing radiation, temozolomide, and cisplatin.
  • 1.4K
  • 22 Jun 2021
Topic Review
High-resolution melt method
HRM (High-resolution melt) analysis is a powerful molecular biology detection method used for the identification of genetic mutations, DNA methylation analysis or species identification. 
  • 1.4K
  • 27 Oct 2020
Topic Review
Cathepsin Proteases and Bcl-2 Proteins
Taken with the growing importance of cathepsin-mediated substrate proteolysis in tumor biology and progression, the focus and emphasis placed on therapeutic design and development is coming into fruition. Underpinning this approach is the invariable progression from the direction of fully characterizing cathepsin protease members and their substrate targets, towards targeting such an interaction with tangible therapeutics. The two groups of such substrates that have gained much attention over the years are the pro- and anti- apoptotic protein intermediates from the extrinsic and intrinsic signaling arms of the apoptosis pathway.
  • 1.4K
  • 08 May 2021
Topic Review
Phycobilisomes and Phycobiliproteins
Eukaryotic photosynthesis arose in the course of evolution as a result of the incorporation of an unstored cyanobacterium and its transformation into chloroplasts by an ancestral heterotrophic eukaryotic cell. The pigment apparatus of earlier evolved  Archaeplastida algae and other later algal phyla turned out to be arranged in the same way having pigment-protein complexes of photosystem I (PS I), photosystem II (PS II) and antenna complex. PS I and PS II are characterized by uniform structures, while the light-harvesting antennae have undergone a number  of changes.
  • 1.4K
  • 14 Feb 2023
Topic Review
Lipid Metabolism and Acylglycerolphosphate Acyltransferases (AGPATs) in Cancer
Alter lipid metabolism is an emerging hallmark of cancer. The conversion of fatty acids to neutral triacylglycerides (TAG), plays a central role in this adaptive process.  Acylglycerolphosphate acyltransferases (AGPATs)/lysophosphatidic acid acyltransferases (LPAATs) are a family of enzymes that catalyze the synthesis of phosphatidic acid (PA), an intermediate in TAG synthesis, a signaling molecule, and a precursor of phospholipids. Importantly, the expression of AGPATs has been linked to diverse physiological and pathological phenotypes, including cancer.
  • 1.4K
  • 20 Jan 2022
Topic Review
Clostridium botulinum
Clostridium botulinum is a Gram-positive, spore-forming, obligate anaerobic bacterium widely distributed in soils, sediments, and aquatic environments. It is best known as the causative agent of botulism, a severe neuroparalytic disease caused by the production of botulinum neurotoxins (BoNTs), among the most potent biological toxins known.
  • 1.4K
  • 23 Sep 2025
  • Page
  • of
  • 133
Academic Video Service