You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
HiPIMS coatings for self-cleaning application: cyclic Reactive Green 12 degradation
We propose a new photocatalytic interface prepared by High-Power Impulse Magnetron Sputtering (HiPIMS) and investigated for the degradation of Reactive Green 12 (RG12) as target contaminant under visible light LEDs illumination. The CuxO/TiO2 nanoparticulate photocatalyst was sequentially sputtered on polyester (PES). The photocatalyst formulation was optimized by investigating the effect of different parameters such as: the sputtering time of CuxO, the applied current and the deposition mode (Direct Current Magnetron Sputtering, DCMS or HiPIMS). The results show that the fastest RG12 degradation was obtained on CuxO/TiO2 sample prepared at 40 A in HIPIMS mode under low intensity LEDs irradiation. The better self-cleaning efficiency of 53.4% within 360 min was found with 4 mg/L of RG12 initial concentration and 0.05 % Cuwt/PESwt as determined by X-ray Fluorescence. All the prepared samples contain a TiO2 under layer with 0.02% Tiwt/PESwt. By transmission electron microscopy (TEM), both layers were seen uniformly distributed on the PES fibers. The effect of the surface-area to volume (dye volume) ratio (SA/V) on the photocatalytic self-cleaning efficiency was also investigated for the discoloration of 4 mg/L RG12. The CuxO/TiO2 photocatalyst was found to have a good reusability and stability up to 21 cycles. Ions release were quantified by mean of inductively coupled plasma mass spectrometry (ICP-MS) showing low Cu-ions release.
  • 2.7K
  • 30 Oct 2020
Topic Review
The Perovskite Solar Cell
Perovskite, an organic–inorganic hybrid material, tends to be a promising light-harvesting material. PSCs (organic-inorganic perovskite solar cells) are considered a significant breakthrough in photovoltaics and have received great attention. Due to the inherent advantage of perovskite thin films that can be fabricated using simple solution techniques at low temperatures, PSCs are regarded as one of the most important low-cost and mass-production prospects.
  • 2.7K
  • 14 Sep 2022
Topic Review
Carbonation and Its Mechanisms in Reinforced Concrete Structures
Reinforced concrete (RC) has been commonly used as a construction material for decades due to its high compressive strength and moderate tensile strength. However, these two properties of RC are frequently hampered by degradation. The main degradation processes in RC structures are carbonation and the corrosion of rebars. The scientific community is divided regarding the process by which carbonation causes structural damage. Some researchers suggest that carbonation weakens a structure and makes it prone to rebar corrosion, while others suggest that carbonation does not damage structures enough to cause rebar corrosion.
  • 2.6K
  • 11 May 2022
Topic Review
Titanium Nitriding Methods: Drawbacks and Benefits
The application of titanium alloys in aircraft construction is expanding due to their high corrosion resistance and excellent strength-to-weight ratio. However, if not specially treated, they are characterized by relatively low wear resistance [1,2], a significant limiting factor for their application. The surface treatment may improve this characteristic, and diffusion-saturation by nitrogen is the gold standard, and this section discusses the features, benefits, and shortcomings of the most common titanium nitriding methods.
  • 2.6K
  • 20 Jan 2022
Topic Review
LPCS for Metal-Ceramic/Ceramic Coatings
Based on the recent analysis of various databases, cold spray (CS), the newest method among thermal spraying technologies, has received the unabated attention of hundreds of researchers continuously since its invention in the 1980s. The significance of CS lies in the low process temperature, which usually ensures compressive residual stresses and allows for the formation of coatings on a thermally sensitive substrate. 
  • 2.6K
  • 13 Sep 2021
Topic Review
Sol-Gel Technology
The commercial availability of inorganic/organic precursors for sol-gel formulations is very high and increases day by day. In textile applications, the precursor-synthesized sol-gels along with functional chemicals can be deposited onto textile fabrics in one step by rolling, padding, dip-coating, spraying or spin coating. By using this technology, it is possible to provide fabrics with functional/multi-functional characteristics including flame retardant, anti-mosquito, water- repellent, oil-repellent, anti-bacterial, anti-wrinkle, ultraviolet (UV) protection and self-cleaning properties. These surface properties are discussed, describing the history, basic chemistry, factors affecting the sol-gel synthesis, progress in sol-gel technology along with various parameters controlling sol-gel technology. Additionally, this review deals with the recent progress of sol-gel technology in textiles in addressing fabric finishing, water repellent textiles, oil/water separation, flame retardant, UV protection and self-cleaning, self-sterilizing, wrinkle resistance, heat storage, photochromic and thermochromic color changes and the improvement of the durability and wear resistance properties.
  • 2.6K
  • 05 May 2023
Topic Review
Chitosan-based Flame-Retardant Systems
During the last decade, the utilization of chitin, and in particular its deacetylated form, i.e. chitosan, for flame retardant purposes, has represented quite a novel and interesting application, very far from the established uses of this bio-sourced material. In this entry, chitosan is a carbon source that can be successfully exploited, often in combination with intumescent products, in order to provide different polymer systems (namely, bulky materials, fabrics and foams) with high flame retardant (FR) features. Besides, this specific use of chitosan in flame retardance is well suited to a green and sustainable approach.
  • 2.6K
  • 22 Oct 2020
Topic Review
Shellac and Its Potential in the Packaging Application
Shellac, an insect-derived material, has received the least attention due to its scarcity in south Asia. Currently, Shellac is used in various applications, such as furniture polish, glazing agent for candies and pharmaceutical pills, coating on fruits to increase shelf life, primers, smart sensor, 3D printing, and green electronic. However, the limitations of Shellac such as: brittleness with time, self-esterification, low transparency, solubility in alkaline medium and in most organic solvents have limited its usage in the packaging application. Many of these problems can be improved by physical blending or chemical reaction with other materials to make Shellac more durable, impede self-esterification, and facilitate the film-forming ability, which suggests the potential usage of Shellac in packaging applications.
  • 2.6K
  • 21 Apr 2023
Topic Review
Perovskite Semiconductor Field–Effect Transistors
Perovskite materials are considered as the most alluring successor to the conventional semiconductor materials to fabricate solar cells, light emitting diodes and electronic displays. However, the use of the perovskite semiconductors as a channel material in field effect transistors (FET) are much lower than expected due to the poor performance of the devices. Despite low attention, the perovskite FETs are used in widespread applications on account of their unique opto-electrical properties. 
  • 2.5K
  • 27 Jul 2022
Topic Review
Self-Healing Mechanisms of Polyurea
Self-healing polymers are categorized as smart materials that are capable of surface protection and prevention of structural failure. Polyurethane/polyurea, as one of the representative coatings, has also attracted attention for industrial applications.
  • 2.5K
  • 20 Jul 2022
Topic Review
Preparation Methods for Large-Area Perovskite Solar Cells
Solar energy is one of the most encouraging, abundant, green, and renewable sources for decreasing or even replacing traditional energy in the future. The energy provided by the sun in one hour is sufficient to supply the Earth’s needs for an entire year. The recent rapid development in perovskite solar cells (PSCs) has led to significant research interest due to their notable photovoltaic performance, currently exceeding 25% power conversion efficiency for small-area PSCs. The materials used to fabricate PSCs dominate the current photovoltaic market, especially with the rapid increase in efficiency and performance.
  • 2.5K
  • 12 Apr 2022
Topic Review
Application of Plant Waxes in Edible Coatings
Natural waxes are of plant or animal origin. They are resistant to moisture, oxidation, and microbiological decomposition. Plant waxes of commercial and industrial importance are obtained from various plant species and are used to produce cosmetic products, ink, varnishes, luster, candles, pastels, etc. Some of them are used in the composition of some edible coatings applied to various foodstuffs. By using them, the properties and quality of food products are preserved during storage.
  • 2.5K
  • 15 Jun 2023
Topic Review
Agro-Food Waste Valorization for Sustainable Bio-Based Packaging
The increase in the generation of agro-food processing waste, coupled with uncontrolled disposal and inefficient recovery methods, has raised concerns among society, industries, and the research community. This issue is compounded by the accumulation of conventional synthetic packaging. Owing to their significant environmental and economic impacts, the development of sustainable, biocompatible, and biodegradable materials has become an urgent target. In this context, research efforts have been directed toward developing new packaging materials based on renewable sources, such as agro-food waste, contributing to the circular economy concept.
  • 2.5K
  • 17 Feb 2024
Topic Review
Cracks Types and Causes of Laser Cladding Coatings
Laser cladding, a novel surface treatment technology, utilizes a high-energy laser beam to melt diverse alloy compositions and form a specialized alloy-cladding layer on the surface of the substrate to enhance its property. However, it can generate substantial residual stresses during the rapid cooling and heating stages, due to inadequate selection of cladding process parameters and disparities in thermophysical properties between the clad layer and substrate material, leading to the formation of various types of cracks. These cracks can significantly impact the quality and performance of the coating.
  • 2.5K
  • 26 Jun 2023
Topic Review
Photo-/Electro-Driven Thermochromic Smart Windows
Thermochromic smart windows can automatically control solar radiation according to the ambient temperature. Compared with photochromic and electrochromic smart windows, they have a stronger applicability and lower energy consumption, and have a wide range of application prospects in the field of building energy efficiency. This entry describes that trends of photo-/electro-driven thermochromic smart windows.
  • 2.4K
  • 15 Dec 2021
Topic Review
Silicon Nitride and Hydrogenated Silicon Nitride Thin Films
Silicon nitride (SiNx) and hydrogenated silicon nitride (SiNx:H) thin films enjoy widespread scientific interest across multiple application fields. Exceptional combination of optical, mechanical, and thermal properties allows for their utilization in several industries, from solar and semiconductor to coated glass production. Historically different types of chemical vapour deposition (CVD), such as plasma enhanced (PE-CVD) or hot wire (HW-CVD) are the most common deposition methods, while physical vapour deposition (PVD), primarily sputtering is also widely used. Besides these fabrication methods, atomic layer deposition (ALD) is an emerging technique due to its ability to control the deposition at atomic level and provide extremely thin SiNx layers. Application of these three deposition methods is compared while special attention is paid to the effect of fabrication method on the properties of SiNx thin films, in particular the optical, mechanical, and thermal properties.
  • 2.4K
  • 23 Dec 2021
Topic Review
Polysaccharides Edible Films and Coatings
There has been a significant increase in the development of edible films and coatings in recent times, and this is expected to have a significant impact on the quality of fruit and vegetables in the coming years. Consumers expect fresh fruit and vegetables free from pesticide residues, with high quality, nutritional value and an extended shelf life. The application of coatings and edible films to fruits and vegetables represents an environmentally friendly approach to an innovative solution to this problem. Coatings and edible films can act as ecological and biodegradable packaging. The coating strategy involves a combination of natural biopolymers and appropriate preservation methods. Numerous studies show that natural polysaccharides are well suited for use as packaging material for fresh fruit and vegetables and can often be an important alternative to synthetic compounds. Natural polymer materials are a good barrier to oxygen and carbon dioxide; however, they are characterised by excessive solubility in the water environment, water vapour permeability and low extensibility.
  • 2.4K
  • 05 May 2021
Topic Review
Chitosan Films Barrier improvement
Chitosan is produced commercialy by deacetylation of chitin (a molecule derivative from glucose, and the second most plentiful natural polysaccharide found on our planet after cellulose) and chitosan films have been studied for food preservation, since they are biocompatible, biodegradable, and bioactive. However, their performance, in terms of water and gases barrier properties, needs to be improved.
  • 2.4K
  • 22 Apr 2021
Topic Review
Graphene as Reinforcing Filler
Graphene represents an innovative material, which possesses a unique combination of properties. The remarkable features of this material allow it to be often used as a reinforcing filler in organic based coatings. The excellent conductivity and mechanical strength properties of graphene produce a significant increase in the performance of the polymer matrix. Recently, however, scholars have focused on the barrier effect properties that can be provided by graphene flakes to obtain high corrosion resistance coatings. If well distributed in the polymeric matrix, in fact, the graphene-based sheets are able to provide a high resistance to the passage of aggressive ions, fundamental for the development of corrosion processes on the metal substrate. The distribution of graphene-based fillers, however, is a critical aspect, which can be improved by means of certain oxidation and functionalization processes of graphene flakes. Recent studies have shown the possibility of combining the excellent features of cataphoretic processes with the remarkable protective properties of graphene-based fillers in the creation of high-performance multifunctional composite coatings. The functionalized graphene oxide flakes, in the correct amount, can in fact increase the protective performance of cataphoretic coatings, as well as providing additional features such as mechanical strength and high conductivity.
  • 2.4K
  • 01 Nov 2020
Topic Review
Protective Coatings for ATF Claddings
Since 2011, following the tragic Fukushima Daiichi Nuclear accident, great attention has been devoted to the development of a new concept of nuclear fuel to improve the safety of nuclear reactors during normal operation, transient modes and under accident conditions. A concept called “accident tolerant fuel (ATF)” indicates a strategy to prevent/limit the interaction of cladding material with water steam, or hydrogen embrittlement, and to reduce heat generation during cladding oxidation and increase “processing time” under accident conditions before re-flooding of the nuclear core.
  • 2.3K
  • 11 Oct 2022
  • Page
  • of
  • 12
Academic Video Service