You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Human Placenta Modeling
The human placenta brings the maternal and fetal circulatory systems into contact while keeping them independent, due to its intricate structure and adaptation in pregnancy. The placental barrier, composed essentially of trophoblasts, connective tissue and endothelium, separates the fetal and maternal compartments and is a key structure for this organ’s function. Maternal—fetal exchange takes place in the areas where the barrier is an extremely thin membrane (only 3.5 μm thick). Many of the human placental barrier functions are little understood and more representative models are still needed to better recapitulate the complex architecture and dynamics of the human fetal—placental barrier and provide a more in-depth understanding of the organ’s function.
  • 849
  • 16 Aug 2021
Topic Review
The Importance of Photoacoustic Tomography Image Post-Processing
Photoacoustic tomography (PAT) is a promising imaging technique that utilizes the detection of light-induced acoustic waves for both morphological and functional biomedical imaging. However, producing high-quality images using PAT is still challenging and requires further research. Besides improving image reconstruction, an alternative way to address this issue is through image post-processing, which enhances and optimizes the reconstructed PAT image. Image post-processing methods have rapidly emerged in PAT and are proven to be essential in improving image analysis performance.
  • 849
  • 14 Jul 2023
Topic Review
Lithium Therapeutic Monitoring in Bipolar Disorder
Lithium was discovered as a therapeutic remedy for psychiatric conditions in the mid-19th century and was reintroduced one century later and it is still the most widely used medication for long-term management of bipolar disorder, where it is administered as a salt in the form of lithium carbonate/cirate/chloride/or sulfate. Bipolar disorder (BD) is a serious life-long disorder, characterized by recurrent episodes of depression and mania.
  • 847
  • 10 Feb 2022
Topic Review
High-Frequency Sensors
Wearable sensing is an emergent technology for the monitoring of human vital signs in various fields such as health, sports, and the military. High-frequency respiration sensors offer unique advantages such as smaller size and wireless communication capabilities, making them suitable for various applications in healthcare and wearable technology. Moreover, this classification based on operating frequency is useful in the context of human safety concerning electromagnetic radiations and for the assessment of sensor systems in the presence of Electromagnetic Interference (EMI).
  • 842
  • 06 Sep 2023
Topic Review
Multi-Domain Model of Anterior Cruciate Ligament
The anterior cruciate ligament’s (ACL) mechanics is an important factor governing the ligament’s integrity and, hence, the knee joint’s response. Despite many investigations in this area, the cause and effect of injuries remain unclear or unknown. This may be due to the complexity of the direct link between macro- and micro-scale damage mechanisms. In the first part of this investigation, a three-dimensional coarse-grained model of collagen fibril (type I) was developed using a bottom-up approach to investigate deformation mechanisms under tensile testing. 
  • 836
  • 27 Oct 2021
Topic Review
3D Bioprinting in Cardiac Tissue Engineering
Cardiovascular diseases are the leading cause of morbidity and mortality in the United States. Cardiac tissue engineering is a direction in regenerative medicine that aims to repair various heart defects with the long-term goal of artificially rebuilding a full-scale organ that matches its native structure and function. Three-dimensional (3D) bioprinting offers promising applications through its layer-by-layer biomaterial deposition using different techniques and bio-inks. Recent advancements in this field have improved 3D bioprinting accuracy and resolution and its latest applications span cardiac tissues, patches, organoids, and the full organ. 
  • 833
  • 21 Jul 2023
Topic Review
Controlling Upper Limb Prostheses Using Sonomyography
A ground-breaking study by Zheng et al. investigated whether ultrasound imaging of the forearm might be used to control a powered prosthesis, and the term “sonomyography” (SMG) was coined by the group. Ultrasound signals have recently garnered the interest of researchers in the area of HMIs because they can collect information from both superficial and deep muscles and so provide more comprehensive information than other techniques. Due to the great spatiotemporal resolution and specificity of ultrasound measurements of muscle deformation, researchers have been able to infer fine volitional motor activities, such as finger motions and the dexterous control of robotic hands.
  • 830
  • 27 Feb 2023
Topic Review
Neurofeedback and Neuromodulation
Neurofeedback is a non-invasive therapeutic approach that has gained traction in recent years, showing promising results for various neurological and psychiatric conditions. It involves real-time monitoring of brain activity, allowing individuals to gain control over their own brainwaves and improve cognitive performance or alleviate symptoms. The use of electroencephalography (EEG), such as brain–computer interface (BCI), transcranial direct current stimulation (tDCS), and transcranial magnetic stimulation (TMS), has been instrumental in developing neurofeedback techniques.
  • 827
  • 10 Aug 2023
Topic Review
Novel Heart Organoid Generation Methods
Organoids are three-dimensional in vitro cell constructs that recapitulate organ properties and structure to a significant extent. They constitute particularly useful models to study unapproachable states in humans, such as embryonic and fetal development, or early disease progression in adults. In recent years organoids have been implemented to model a wide range of different organs and disease conditions. However, the technology for their fabrication and application to cardiovascular studies has been lagging significantly when compared to other organoid types (e.g., brain, pancreas, kidney, intestine). This is a surprising fact since cardiovascular disease (CVD) and congenital heart disease (CHD) constitute the leading cause of mortality and morbidity in the developed world, and the most common birth defect in humans, respectively, and collectively constitute one of the largest unmet medical needs in the modern world. There is a critical need to establish in vitro models of the human heart that faithfully recapitulate its biology and function, thus enabling basic and translational studies to develop new therapeutics. Generating heart organoids that truly resemble the heart has proven difficult due to its complexity, but significant progress has been made recently to overcome this obstacle.
  • 826
  • 13 Sep 2021
Topic Review
Virus Filter Foulants
The major classes of foulants in virus filtration. This includes irreversible and reversible product aggregates and minor product variants that differ in their charge or hydrophobicity. Product variants arise because mammalian cell-derived biotherapeutics are heterogeneous. The product is defined based on the production process and not on a single molecular species. Product variants with different post-translational modifications can have different hydrophobicity, charge, and conformations. If present, HCP, proteases, and nucleic acids can also foul the virus filter.
  • 826
  • 25 Apr 2022
Topic Review
Vision-Based Methods for Food and Fluid Intake Monitoring
Food and fluid intake monitoring are essential for reducing the risk of dehydration, malnutrition, and obesity. The existing research has been preponderantly focused on dietary monitoring, while fluid intake monitoring, on the other hand, is often neglected. Food and fluid intake monitoring can be based on wearable sensors, environmental sensors, smart containers, and the collaborative use of multiple sensors. Vision-based intake monitoring methods have been widely exploited with the development of visual devices and computer vision algorithms. Vision-based methods provide non-intrusive solutions for monitoring. They have shown promising performance in food/beverage recognition and segmentation, human intake action detection and classification, and food volume/fluid amount estimation. However, occlusion, privacy, computational efficiency, and practicality pose significant challenges.
  • 826
  • 18 Jul 2023
Topic Review
Engineered Vasculature
Engineered vasculature refers to the creation or fabrication of artificial blood vessel networks within biological systems or tissue constructs by combining organ-specific cells and vasculature cells, scaffolds, and biologically active molecules to form functional tissues. Engineered vasculature is inspired by the structure and function of the natural vascular system that facilitates nutrients and oxygen exchange between cells and blood vessels. It has been used to study vascular pathophysiology, vasculature–organ interaction, and drug and cell trans-endothelium trafficking. In particular, it has been applied in cancer research to study angiogenesis, vascular remodeling, and metastasis. Moreover, engineered vascular conduits that are usually large vessels (>1 cm3) have been used for regenerative purposes, replacing large dysfunctional arteria.
  • 824
  • 11 May 2023
Topic Review
Histopathological Gastric Cancer Detection on GasHisSDB Dataset
Gastric cancer is a leading cause of cancer-related deaths worldwide, underscoring the need for early detection to improve patient survival rates. Deep learning pre-trained networks have shown promise in this regard, but each model can only extract a limited number of image features for classification. To overcome this limitation, the use of ensemble models, which combine the decisions of multiple pre-trained networks, proves to be effective.
  • 821
  • 30 May 2023
Topic Review
Electroencephalogram Control Strategies
Electroencephalography (EEG) is the most often-used brain signal in brain-machine interface applications. EEG measures brain activity electric signals generated by currents created by neurons within the brain. Several factors contribute to this popularity compared to other brain wave measurement methods. EEG signals are non-invasive, low cost, compatible, portable, and have a high temporal resolution. This explains why EEG is the most widely used tool to measure brain activity. Furthermore, it is reasonably priced and has an excellent temporal resolution (1 ms).
  • 814
  • 16 Dec 2022
Topic Review
Applications of Photonic Time-Stretch Imaging
Inspiring development in optical imaging enables great applications in the science and engineering industry, especially in the medical imaging area. Photonic time-stretch imaging is one emerging innovation that attracted a wide range of attention due to its principle of one-to-one-to-one mapping among space-wavelength-time using dispersive medium both in spatial and time domains. 
  • 813
  • 08 Aug 2023
Topic Review
B-Lymphocytes in Progression to Osteoporosis
B-lymphocytes—typically appreciated for their canonical role in adaptive, humoral immunity—have emerged as critical regulators of bone remodeling. B-lymphocytes communicate with osteoclasts and osteoblasts through various cytokines, including IL-7, RANK, and OPG. In inflammatory conditions, B-lymphocytes promote osteoclast activation and differentiation. However, B-lymphocytes also possess immunomodulatory properties, with regulatory B-lymphocytes (Bregs) secreting TGF-β1 to restrain pathogenic osteoclastogenesis. 
  • 807
  • 07 Jul 2023
Topic Review
3D Printing in Ophthalmology
Three-dimensional (3D) printing is a process in which materials are added together in a layer-by-layer manner to construct customized products. Many different techniques of 3D printing exist, which vary in materials used, cost, advantages, and drawbacks. Medicine is increasingly benefiting from this transformative technology, and the field of ophthalmology is no exception. The possible 3D printing applications in eyecare are vast and have been explored in the literature, such as 3D-printed ocular prosthetics, orbital implants, educational and anatomical models, as well as surgical planning and training. 
  • 807
  • 01 Feb 2024
Topic Review
Machine Learning-Enhanced Biosensors for Non-Invasive Sampling
The COVID-19 pandemic highlighted the importance of widespread testing for SARS-CoV-2, leading to the development of various new testing methods. However, traditional invasive sampling methods can be uncomfortable and even painful, creating barriers to testing accessibility. 
  • 802
  • 21 Aug 2023
Topic Review
Sericin in Bone Regeneration
The potential of sericin, a protein derived from silkworms, is explored in bone graft applications. Sericin’s biocompatibility, hydrophilic nature, and cost-effectiveness make it a promising candidate for enhancing traditional graft materials. Its antioxidant, anti-inflammatory, and UV-resistant properties contribute to a healthier bone-healing environment, and its incorporation into 3D-printed grafts could lead to personalized medical solutions.
  • 799
  • 31 Aug 2023
Topic Review
Synthesis of Cellulose Nanocrystals
Cellulose is the most abundant natural polymer on Earth. The roles of cellulose nanocrystals’ (CNC) nonlinear geometry in improved performance coatings are appealing for mini structures or device production; yet, CNC is an insulating material. The cellulose nanocrystal (CNC) is a part of the organic crystallization macromolecular compound found in plant fibers and bacteria’s capsular polysaccharides. It has several properties, which include high strength, high crystallization, large physical properties, minimum density, and good biocompatibility. CNCs, with their exceptional mechanical, thermal, and optical properties, have emerged as a versatile and sustainable nanomaterial with the potential to revolutionize various industries.
  • 797
  • 18 Oct 2023
  • Page
  • of
  • 27
Academic Video Service