You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Oenological Fermentation
Wine fermentation is a specific and complex research subject and its control is essential to ensure full process completion while improving wine quality. It displays several specificities, in particular, (i) musts with a very high sugar content, low pH, and some limiting nutrients, as well as a great variability in must composition according to the year, grape variety, and so on; (ii) atypical fermentation conditions with non-isothermal temperature profiles, a quasi-anaerobiosis and legal constraints with a limited and predefined list of authorized operations. New challenges have emerged, related to the increasing diversity of commercially available yeast strains; the fluctuating composition of musts, particularly owing to climate change; and sustainability, which has become a key issue. 
  • 1.1K
  • 08 Sep 2021
Topic Review
Vascular Regulation by endothelial Cells
Human umbilical cord (HUC) is a suitable source for isolation of endothelial cells (ECs) since it has no particular ethical impediments and is considered a non-tumorigenic and less immunogenic model. for this reason, HUC represents an advantageous experimental source for the isolation of endothelial cells. The ECs can produce/release molecules that modulate vasoconstriction and vasorelaxation by smooth muscle cells (SMC).
  • 1.1K
  • 28 Sep 2021
Topic Review
Musashi–1
Musashi–1 (MSI1) is an RNA–binding protein that promotes stemness properties.
  • 1.1K
  • 24 May 2021
Topic Review
Attachment Behaviour in Wolves
Attachment behaviour is a behaviour which is observed when an animal forms a strong bond to either a human or another animal. The behaviour of the animal that is seeking to be close to its either a human or another animal is characterized as attachment behaviour. Bowlby and Ainsworth were the first to describe attachment behaviour in humans. Since then the theory has been applied to other animals and their caregivers and to animal relationships with each other. This bond is often formed as the caregiver provides the essentials for life, such as food and security. Many studies have shown that dogs show attachment behaviour to their human caregivers. Wolves are highly social animals and their social interactions in their packs fit the criteria of attachment behaviour. As dogs are closely related to wolves many investigators have studied wolf attachment behaviour to humans. Wolves that were raised for 3–7 weeks showed attachment behaviour to their human caregivers. This attachment behaviour was characterized by preferring to be close to their human caregiver, by seeking contact, and by greeting the caregiver more frequently compared to a stranger. As the wolf is a non-domesticated animal this is an example of attachment behaviour without domestication. Another study showed that wolves that were hand-reared for 16 weeks of their lives by human caregivers showed attachment behaviour to a stranger rather than their caregiver.
  • 1.1K
  • 23 Nov 2022
Topic Review
The Proteasome Activator PA200/PSME4
Proteasomes comprise a family of proteasomal complexes essential for maintaining protein homeostasis. Accordingly, proteasomes represent promising therapeutic targets in multiple human diseases. Several proteasome inhibitors are approved for treating hematological cancers. Their side effects impede their efficacy and broader therapeutic applications. Therefore, understanding the biology of the different proteasome complexes present in the cell is crucial for developing tailor-made inhibitors against specific proteasome complexes. 
  • 1.1K
  • 09 Sep 2022
Topic Review
Oxidative Stress and Mammalian Spermatozoa
Functionally, sperm capacitation is recognized as a redox-regulated process, wherein a low level of reactive oxygen species (ROS) generation is intimately involved in driving such events as the stimulation of tyrosine phosphorylation, the facilitation of cholesterol efflux and the promotion of cAMP generation. However, the continuous generation of ROS ultimately creates problems for spermatozoa because their unique physical architecture and unusual biochemical composition means that they are vulnerable to oxidative stress. As a consequence, they are heavily dependent on the antioxidant protection afforded by the fluids in the male and female reproductive tracts and, during the precarious process of insemination, seminal plasma. If this antioxidant protection should be compromised for any reason, then the spermatozoa experience pathological oxidative damage. In addition, situations may prevail that cause the spermatozoa to become exposed to high levels of ROS emanating either from other cells in the immediate vicinity (particularly neutrophils) or from the spermatozoa themselves. The environmental and lifestyle factors that promote ROS generation around spermatozoa are reviewed in this article, as are the techniques that might be used in a diagnostic context to identify patients whose reproductive capacity is under oxidative threat.
  • 1.1K
  • 17 Jun 2021
Topic Review
Curcumin in Retinal Diseases
The retina is subjected to oxidative stress due to its high vascularization, long time light exposition and a high density of mitochondria. Oxidative stress can lead to pathological processes, like cell apoptosis, angiogenesis and inflammation ending in retinal pathologies. Curcumin, a major bioactive component obtained from the spice turmeric (Curcuma longa) rhizome has been used for centuries in Asian countries for cooking and for curing all kinds of diseases like dysentery, chest congestion and pain in general, due to its antioxidant effects. Curcumin prevents the formation of reactive oxygen species and so it is a good protective agent. Curcumin has shown also anti-inflammatory, and antitumor properties. Curcumin is a natural product, which can be a therapeutic option in a variety of retinal diseases due to its pleiotropic properties. Some drawbacks are its poor solubility, bioavailability and lack of stability at physiological conditions; which have been shown in curcumin skeptical publications.
  • 1.1K
  • 22 Sep 2021
Topic Review
Acinar-to-Ductal Metaplasia and Transcription Factors Involved
Pancreatic acinar-to-ductal metaplasia (ADM) is a cellular process in which the differentiated pancreatic acinar cells transform into duct-like cells. This process can occur as a result of cellular injury or inflammation in the pancreas. While ADM is a reversible process allowing pancreatic acinar regeneration, persistent inflammation or injury can lead to the development of pancreatic intraepithelial neoplasia (PanIN), which is a common precancerous lesion that precedes pancreatic ductal adenocarcinoma (PDAC).
  • 1.1K
  • 19 Jun 2023
Topic Review
Great Video Abstract
In today's information-rich landscape, the art of scientific communication is evolving, with video abstracts emerging as a dynamic tool. This comprehensive guide explores the power of video abstracts to engage a diverse audience. It dissects key components, including narration, visuals, music, structure, and accessibility. Practical tips, examples, and case studies highlight best practices. Researchers are encouraged to plan, practice, and promote their video abstracts while considering legal and ethical considerations. By mastering this skill, scientists can bridge the gap between their research and a global audience, advancing knowledge dissemination and fostering scientific understanding.
  • 1.1K
  • 15 Sep 2023
Topic Review
ANNEXIN A1
ANXA1 is found in the plasma membrane, cytoplasm, and nucleus, being described at low levels in the nuclear and cytoplasmic compartments of placental cells related to gestational diabetic diseases, and its translocation from the cytoplasm to the nucleus has been associated with a response to DNA damage. The human ANXA1 gene is located on chromosome 19q24, and encodes a 37-kDa protein. ANXA1 has a central domain (C-terminal), consisting of four repeats of 70 to 80 amino acids, which are highly conserved and responsible for calcium affinity and binding to phospholipids.
  • 1.1K
  • 20 Jul 2022
Topic Review
Ca2+-Independent Phospholipase A2β
The Ca2+-independent phospholipase A2β (iPLA2β) is a member of the PLA2 family that has been proposed to have roles in multiple biological processes including membrane remodeling, cell proliferation, bone formation, male fertility, cell death, and signaling. Such involvement has led to the identification of iPLA2β activation in several diseases such as cancer, cardiovascular abnormalities, glaucoma, periodontitis, neurological disorders, diabetes, and other metabolic disorders. More recently, there has been heightened interest in the role that iPLA2β plays in promoting inflammation.
  • 1.1K
  • 10 Jun 2021
Topic Review
Anticancer Drug Discovery Based on Natural Products
Malignancies cause one out of six mortalities, which is a serious health problem. Cancer therapy has always been challenging, apart from major advances in immunotherapies, stem cell transplantation, targeted therapies, hormonal therapies, precision medicine, and palliative care, and traditional therapies such as surgery, radiation therapy, and chemotherapy. Natural products are integral to the development of innovative anticancer drugs in cancer research, offering the scientific community the possibility of exploring novel natural compounds against cancers. The role of natural products like Vincristine and Vinblastine has been thoroughly implicated in the management of leukemia and Hodgkin’s disease. The computational method is the initial key approach in drug discovery, among various approaches.
  • 1.1K
  • 24 Jan 2024
Topic Review
DNA Damage Response and Ferroptosis
Ferroptosis is a novel form of iron-dependent cell death characterized by lipid peroxidation. While the importance and disease relevance of ferroptosis are gaining recognition, much remains unknown about its interaction with other biological processes and pathways. Recently, several studies have identified intricate and complicated interplay between ferroptosis, ionizing radiation (IR), ATM (ataxia–telangiectasia mutated)/ATR (ATM and Rad3-related), and tumor suppressor p53, which signifies the participation of the DNA damage response (DDR) in iron-related cell death. DDR is an evolutionarily conserved response triggered by various DNA insults to attenuate proliferation, enable DNA repairs, and dispose of cells with damaged DNA to maintain genome integrity. Deficiency in proper DDR in many genetic disorders or tumors also highlights the importance of this pathway. 
  • 1.1K
  • 04 Aug 2021
Topic Review
Cytolethal Distending Toxin
The cytolethal distending toxin (CDT) is produced by many pathogenic Gram-negative bacteria and is considered as a virulence factor. In human cells, CDT exposure leads to a unique cytotoxicity associated with a characteristic cell distension and induces a cell cycle arrest dependent on the DNA damage response (DDR) triggered by DNA double-strand breaks (DSBs). CDT has thus been classified as a cyclomodulin and a genotoxin.
  • 1.1K
  • 03 Jun 2021
Topic Review
Heart Failure with Preserved Ejection Fraction: Microvascular Dysfunction
Heart failure with preserved ejection fraction (HFpEF) is a condition with increasing incidence, leading to a health care problem of epidemic proportions for which no curative treatments exist. Consequently, an urge exists to better understand the pathophysiology of HFpEF. Accumulating evidence suggests a key pathophysiological role for coronary microvascular dysfunction (MVD), with an underlying mechanism of low-grade pro-inflammatory state caused by systemic comorbidities.
  • 1.1K
  • 24 Feb 2022
Topic Review
Anti-Photoaging Benefits of Seaweeds
The skin health benefits of seaweeds have been known since time immemorial. They are known as potential renewable sources of bioactive metabolites that have unique structural and functional features compared to their terrestrial counterparts. In addition, to the consciousness of green, eco-friendly, and natural skincare and cosmetics products, their extracts and bioactive compounds such as fucoidan, laminarin, carrageenan, fucoxanthin, and mycosporine like amino acids (MAAs) have proven useful in the skincare and cosmetic industries. These bioactive compounds have shown potential anti-photoaging properties. Furthermore, some of these bioactive compounds have been clinically tested and currently available in the market. In this contribution, the recent studies on anti-photoaging properties of extracts and bioactive compounds derived from seaweeds were described and discussed.
  • 1.1K
  • 13 Jul 2021
Topic Review
Thermogenic Fat
The concerning worldwide increase of obesity and chronic metabolic diseases, such as T2D, dyslipidemia, and cardiovascular disease, motivates further investigations into preventive and alternative therapeutic approaches. Over the past decade, there has been growing evidence that the formation and activation of thermogenic adipocytes (brown and beige) may serve as therapy to treat obesity and its associated diseases owing to its capacity to increase energy expenditure and to modulate circulating lipids and glucose levels. Thus, understanding the molecular mechanism of brown and beige adipocytes formation and activation will facilitate the development of strategies to combat metabolic disorders. 
  • 1.1K
  • 17 Jun 2021
Topic Review
Radiation-Induced Intestinal Normal Tissue Toxicity Protein Signatures
Radiation-induced toxicity to healthy/normal intestinal tissues, especially during radiotherapy, limits the radiation dose necessary to effectively eradicate tumors of the abdomen and pelvis. Although the pathogenesis of intestinal radiation toxicity is highly complex, understanding post-irradiation alterations in protein profiles can provide crucial insights that make radiotherapy safer and more efficient and allow for increasing the radiation dose during cancer treatment.
  • 1.1K
  • 26 Dec 2022
Topic Review
Glycolytic Switch in Malignant Glioma
Malignant glioma represents a fatal disease with a poor prognosis and development of resistance mechanisms against conventional therapeutic approaches. The distinct tumor zones of this heterogeneous neoplasm develop their own microenvironment, in which subpopulations of cancer cells communicate. Adaptation to hypoxia in the center of the expanding tumor mass leads to the glycolytic and angiogenic switch, accompanied by upregulation of different glycolytic enzymes, transporters, and other metabolites. These processes render the tumor microenvironment more acidic, remodel the extracellular matrix, and create energy gradients for the metabolic communication between different cancer cells in distinct tumor zones. Escape mechanisms from hypoxia-induced cell death and energy deprivation are the result. The functional consequences are more aggressive and malignant behavior with enhanced proliferation and survival, migration and invasiveness, and the induction of angiogenesis. 
  • 1.1K
  • 03 Jun 2021
Topic Review
Neutrophil Extracellular Traps and NLRP3 Inflammasome
Atherosclerosis is the formation of plaque within arteries due to overt assemblage of fats, cholesterol and fibrous material causing a blockage of the free flow of blood leading to ischemia. It is harshly impinging on health statistics worldwide because of being principal cause of high morbidity and mortality for several diseases including rheumatological, heart and brain disorders. Atherosclerosis is perpetuated by pro-inflammatory and exacerbated by pro-coagulatory mediators. Besides several other pathways, the formation of neutrophil extracellular traps (NETs) and the activation of the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome contribute significantly to the initiation and propagation of atherosclerotic plaque for its worst outcomes.
  • 1.1K
  • 27 Apr 2023
  • Page
  • of
  • 48
Academic Video Service