Topic Review
Laboratory of Analytical Chemistry
The Laboratory of Analytical Chemistry was established in 1963 and is part of the Department of Physical, Analytical and Environmental Chemistry of the School of Chemistry in the Faculty of Sciences of Aristotle University of Thessaloniki (AUTh). Today the Laboratory has seven Faculty members: Six Professors (Aristidis Anthemidis, Stella Girousi, Victoria Samanidou, George Theodoridis, George Zachariadis, Anastasia-Stella Zotou), and two Assistant Professors (Paraskevas Tzanavaras and George Tsogkas). Its function is also supported by 1 member of the Technical Staff (Foteini Zougrou, MSc Chemist). The main subject of the Laboratory's teaching and research is analytical chemistry, namely the development, validation and application of new analytical methods, as well as the exploration of new instrumental techniques and innovative materials used in chemical analysis. Within the framework of the educational services provided by the Laboratory, a number of courses are offered in the undergraduate and postgraduate curricula. Besides the students of the Department of Chemistry, students of other departments of AUTh are also trained. The main research fields served by the faculty members of the Laboratory of Analytical Chemistry, include: SEPARATION AND HYPHENATED ANALYTICAL TECHNIQUES SPECTROSCOPIC, AUTOMATED AND MULTIELEMENTAL TECHNIQUES ELECTROANALYTICAL TECHNIQUES, SENSORS AND BIOSENSORS MODERN SAMPLE PREPARATION TECHNIQUES AND INNOVATIVE MATERIALS
  • 2.7K
  • 29 Oct 2020
Topic Review
Citrus Uses in the Food Industry
Citrus fruits occupy an important position in the context of the fruit trade, considering that both fresh fruits and processed products are produced on a large scale. Citrus fruits are recognized as an essential component of the human diet, thanks to their high content of beneficial nutrients such as vitamins, minerals, terpenes, flavonoids, coumarins and dietary fibers. Among these, a wide range of positive biological activities are attributed to terpenes and flavonoids derivatives.
  • 2.4K
  • 03 Mar 2023
Topic Review
Furfuryl Alcohol
Furfuryl alcohol (FuOH, C4H3OCH2OH, 2-furylmethanol, 2-furancarbinol) has applications in the fabrication of foundry resins, the ingredient production of P-series fuels, in liquid alkanes and in food production. It is also a very important intermediate in fine chemical synthesis and the polymer industry, and it is used as a chemical intermediate for the synthesis of lysine, vitamin C and levulinic acid and employed as a lubricant and as a dispersing agent.
  • 2.4K
  • 10 Oct 2020
Topic Review
Carbon Quantum Dots and Graphene Quantum Dots
Carbon quantum dots (CQDs) are small carbon NPs with a size less than 10 nm having excellent conductivity, chemical stability, environmental friendliness, high photostability, broadband optical absorption, low toxicity, photobleaching resistance, high surface area, and ease of modification. Graphene quantum dots (GQDs) are two-dimensional nanocrystals composed of small graphene particles with lateral diameters less than 100 nm. 
  • 2.3K
  • 12 Oct 2022
Topic Review
Reversible Hydrogen Storage
In the field of energy storage, recently investigated nanocomposites show promise in terms of high hydrogen uptake and release with enhancement in the reaction kinetics. Among several, carbonaceous nanovariants like carbon nanotubes (CNTs), fullerenes, and graphitic nanofibers reveal reversible hydrogen sorption characteristics at 77 K, due to their van der Waals interaction. The spillover mechanism combining Pd nanoparticles on the host metal-organic framework (MOF) show at room temperature uptake of hydrogen. Metal or complex hydrides either in the nanocomposite form and its subset, nanocatalyst dispersed alloy phases illustrate the concept of nanoengineering and nanoconfinement of particles with tailor-made properties for reversible hydrogen storage. Another class of materials comprising polymeric nanostructures such as conducting polyaniline and their functionalized nanocomposites are versatile hydrogen storage materials because of their unique size, high specific surface-area, pore-volume, and bulk properties. The salient features of nanocomposite materials for reversible hydrogen storage are reviewed and discussed.
  • 2.2K
  • 22 Jul 2020
Topic Review
Green Extraction Techniques for Active Ingredients in Tea
The so-called “Green Extraction”—which is based on the design of different extraction processes for the reduction in energy consumption, as well as the usage of alternative solvents and renewable natural materials —was developed.
  • 2.2K
  • 17 Feb 2023
Topic Review
Polyphenol Analysis
The analysis of polyphenols can be approached from two main perspectives: by liquid chromatography, which provides the polyphenolic profile, but also allows the quantification of target individual polyphenols, or by spectrophotometric or electrochemical assays, which provide an estimation of the total polyphenol content or the antioxidant capacity.
  • 2.1K
  • 11 Feb 2022
Topic Review
Metal Nanoclusters
Metal nanoclusters (NCs), comprising only a few to roughly hundreds of metal atoms, have a metal core-protective agent shell structure. Owing to the size of metal NCs approaching the Fermi wavelength of electrons, the spatial confinement of free electrons in metal NCs generates discrete electronic transitions, thereby exhibiting intriguing molecular-like properties. Therefore, metal NCs are deemed to bridge the gap between molecules and nanoparticles.
  • 2.1K
  • 01 Dec 2020
Topic Review
Substrate
In chemistry, a substrate is typically the chemical species being observed in a chemical reaction, which reacts with a reagent to generate a product. It can also refer to a surface on which other chemical reactions are performed, or play a supporting role in a variety of spectroscopic and microscopic techniques. In synthetic and organic chemistry, the substrate is the chemical of interest that is being modified. In biochemistry, an enzyme substrate is the material upon which an enzyme acts. When referring to Le Chatelier's principle, the substrate is the reagent whose concentration is changed. The term substrate is highly context-dependent.
  • 2.1K
  • 06 Oct 2022
Topic Review
High Performance Liquid Chromatography with Fluorescence Detection Methods
Steroids are compounds widely available in nature and synthesized for therapeutic and medical purposes. Although several analytical techniques are available for the quantification of steroids, their analysis is challenging due to their low levels and complex matrices of the samples. The efficiency and quick separation of the high performance liquid chromatography (HPLC) combined with the sensitivity, selectivity, simplicity, and cost-efficiency of fluorescence, make HPLC coupled to fluorescence detection (HPLC-FLD) an ideal tool for routine measurement and detection of steroids.
  • 2.1K
  • 01 Aug 2022
Topic Review
Fabric Phase Sorptive Extraction
Fabric phase sorptive extraction (FPSE) is an evolutionary sample preparation technique which was introduced in 2014, delivering all green analytical chemistry (GAC) requirements by implementing a natural or synthetic permeable and flexible fabric substrate to host a chemically coated sol–gel organic–inorganic hybrid sorbent in the form of an ultra-thin coating. This construction results in a versatile, fast, and sensitive micro-extraction device. The user-friendly FPSE membrane allows direct extraction of analytes with no sample modification, thus eliminating/minimizing the sample pre-treatment steps, which are not only time consuming, but are also considered the primary source of major analyte loss. Sol–gel sorbent-coated FPSE membranes possess high chemical, solvent, and thermal stability due to the strong covalent bonding between the fabric substrate and the sol–gel sorbent coating. Subsequent to the extraction on FPSE membrane, a wide range of organic solvents can be used in a small volume to exhaustively back-extract the analytes after FPSE process, leading to a high preconcentration factor. In most cases, no solvent evaporation and sample reconstitution are necessary. 
  • 2.1K
  • 08 Feb 2021
Topic Review
Proteomics for Studying Antibiotic Action
To design more efficient treatments against bacterial infections, detailed knowledge about the bacterial response to the commonly used antibiotics is required. Proteomics is a well-suited and powerful tool to study molecular response to antimicrobial compounds. Bacterial response profiling from system-level investigations could increase our understanding of bacterial adaptation, the mechanisms behind antibiotic resistance and tolerance development.
  • 2.1K
  • 03 Nov 2020
Topic Review
Analysis of Phytic Acid
Phytate is a six-fold dihydrogenphosphate ester of myo‑inositol or cis-1,2,3,5-trans-4,6-cyclohexanehexol which is the most abundant of nine possible isomers of inositol (Ins). Myo-orientation is also found in the case of phytic acid, which is due to the fact that the maximal number (i.e., five out of six) of phosphate groups are present in thermodynamically stabilized equatorial position. However, the molecule can be inverted from equatorial (1a5e) to the axial (5a1e) orientation between pH 9.0 and pH 9.5.
  • 2.0K
  • 18 Jan 2021
Topic Review
Swabs
Swabs are used to collect body fluid samples for testing in the forensic and clinical settings. However, swabs made of different materials and are differently shaped may impact the DNA that can be recovered from the body fluids absorbed by the swabs. Recovering a higher quantity of DNA can be important for DNA typing and obtaining a full profile, especially in low template samples. In this study, swabs made of cotton, paper and foam materials from various commercial suppliers were evaluated to determine which swab released the highest quantity of DNA from a fifty-microliter sample of blood applied to the swab. DNA extraction was performed using the phenol chloroform-isoamyl alcohol method and human DNA was quantified using a quantitative real-time PCR assay using the Plexor HY human quantification kit. Overall, Puritan cotton-tipped swabs performed best in this study.
  • 2.0K
  • 08 Sep 2021
Topic Review
Contributions of Chromatography to the Science Progress
Chromatography was born approximately one century ago and has undergone outstanding technological improvements in innovation, research, and development since then that has made it fundamental to advances in knowledge at different levels, with a relevant impact on the well-being and health of individuals. Chromatography boosted a comprehensive and deeper understanding of the complexity and diversity of human–environment interactions and systems, how these interactions affect our life, and the several societal challenges currently facing, namely those related to the sustainability of our planet and the future generations. From the life sciences, which allowed to identify endogenous metabolites relevant to disease mechanisms, to the OMICS field, nanotechnology, clinical and forensic analysis, drug discovery, environment, and “foodprint”, among others, the wide range of applications of today’s chromatographic techniques is impressive. This is fueled by a great variability of powerful chromatographic instruments currently available, with very high sensitivity, resolution, and identification capacity, that provide a strong basis for an analytical platform able to support the challenging demands of the postgenomic and post COVID-19 eras. 
  • 2.0K
  • 02 Sep 2022
Topic Review
Modern Near-Infrared Instrumentation
The ongoing miniaturization of spectrometers creates a perfect synergy with the common advantages of near-infrared (NIR) spectroscopy, which together provide particularly significant benefits in the field of food analysis. The combination of portability and direct onsite application with high throughput and a noninvasive way of analysis is a decisive advantage in the food industry, which features a diverse production and supply chain. A miniaturized NIR analytical framework is readily applicable to combat various problems encountered in modern industry and key sectors of public interest, i.e. food safety risks, agriculture, or environment.
  • 2.0K
  • 30 May 2022
Topic Review
Mixture Designs of Experiments
The experimental designs for mixtures are a subclass of experimental designs useful for studying the effects of ingredients/components in formulations. 
  • 1.9K
  • 04 Jun 2021
Topic Review
Deacetylation
Acetylation (or in IUPAC nomenclature ethanoylation) describes a reaction that introduces an acetyl functional group into a chemical compound. Deacetylation is the removal of an acetyl group. Acetylation refers to the process of introducing an acetyl group (resulting in an acetoxy group) into a compound, namely the substitution of an acetyl group for an active hydrogen atom. A reaction involving the replacement of the hydrogen atom of a hydroxyl group with an acetyl group (CH3CO) yields a specific ester, the acetate. Acetic anhydride is commonly used as an acetylating agent reacting with free hydroxyl groups. For example, it is used in the synthesis of aspirin, heroin, and THC-O-acetate.
  • 1.9K
  • 29 Nov 2022
Topic Review
Reaction of CO2 with Epoxides
Coupling of CO2 with epoxides is a green emerging alternative for the synthesis of cyclic organic carbonates (COC) and aliphatic polycarbonates (APC). The scope of this work is to provide a comprehensive overview of metal complexes having sulfur-containing ligands as homogeneous catalytic systems able to efficiently promote this transformation with a concise discussion of the most significant results. The crucial role of sulfur as the hemilabile ligand and its influence on the catalytic activity are highlighted as well.
  • 1.9K
  • 22 Jan 2021
Topic Review
Graphene Oxide
Graphene oxide (GO) is a chemical compound with a form similar to graphene that consists of one-atom-thick two-dimensional layers of sp2-bonded carbon. Graphene oxide exhibits high hydrophilicity and dispersibility. Thus, it is difficult to be separated from aqueous solutions. Therefore, functionalization with magnetic nanoparticles is performed in order to prepare a magnetic GO nanocomposite that combines the sufficient adsorption capacity of graphene oxide and the convenience of magnetic separation. Moreover, the magnetic material can be further functionalized with different groups to prevent aggregation and extends its potential application. Until today, a plethora of magnetic GO hybrid materials have been synthesized and successfully employed for the magnetic solid-phase extraction of organic compounds from environmental, agricultural, biological, and food samples. The developed GO nanocomposites exhibit satisfactory stability in aqueous solutions, as well as sufficient surface area. Thus, they are considered as an alternative to conventional sorbents by enriching the analytical toolbox for the analysis of trace organic compounds.
  • 1.9K
  • 15 Jan 2021
  • Page
  • of
  • 15
ScholarVision Creations