You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Surface-Functionalized Separator
The surface-modified separator plays a role in improving the electrolyte wettability, homogenizing Li+flux, and strengthening the mechanical/thermal property. Due to these favorable benefits, the formation of sharp Li dendrite is efficiently suppressed and the thermal stability of battery is greatly enhanced. In this article, separator-coating materials are classified into six categories in terms of material characteristics to show how each material has different electrochemical properties. We believe that the suggested approach would become a powerful strategy to improve the performance and stability of next-generation batteries such as lithium-metal batteries.
  • 1.7K
  • 23 Sep 2021
Biography
Tushar Kanti Das Roy
Tushar K. Das Roy, researcher and technologist, science popularizer, entrepreneur, was born in Bangladesh, India. He graduated from the University of Calcutta, India, where he received his Engineering Degree, later moved to Berlin, Germany and there he obtained his Diplomm-Ingenierung at the University of Berlin, Germany; his title of Dr.-Ing. he got it from TU-Clausthal, Germany. He worked
  • 1.7K
  • 02 Apr 2023
Topic Review
Application of Geopolymers in Adsorption
Geopolymer is a porous inorganic material with a three-dimensional mesh structure, good mechanical properties, a simple preparation process (no sintering) and a low economic cost, and it is environmentally friendly. Geopolymer concrete has been widely used in the construction field, and many other studies have revealed that geopolymer will become one of the most promising inorganic materials with unique structure and properties. Geopolymer has a three-dimensional mesh structure that provides the geopolymer with high porosity and a significant number of mesopores that enhance the adsorption capacity by providing more exposed binding sites on the surface. The high mesoporous structure, high porosity, and three-dimensional mesh structure give geopolymers a larger specific surface area, which increases the contact sites with pollutants and impurities. 
  • 1.7K
  • 14 Sep 2022
Topic Review
LaGaO3-Based Solid Oxide Fuel Cell Electrolytes
Solid oxide fuel cells (SOFCs) are efficient electrochemical devices that allow for the direct conversion of fuels (their chemical energy) into electricity. Although conventional SOFCs based on YSZ electrolytes are widely used from laboratory to commercial scales, the development of alternative ion-conducting electrolytes is of great importance for improving SOFC performance at reduced operation temperatures. The basic information has been studied on representative family of oxygen-conducting electrolytes, such as doped lanthanum gallates (LaGaO3). Complex oxides based on LaGaO3 offer a convenient basis for the design of oxygen-conducting electrolytes that can be employed in intermediate-temperature solid oxide fuel cells. A rational combination of appropriate dopants incorporated at various sublattices of LaGaO3 allows superior transport properties to be achieved for co-doped derivatives (La1−xSrxGa1−yMgyO3−δ, LSGM).
  • 1.6K
  • 20 Jun 2022
Topic Review
Hybrid Graphene/Fiber Reinforced Cementitious Composites
Graphene with fascinating properties has been deemed as an excellent reinforcement for cementitious composites, enabling construction materials to be smarter, stronger, and more durable. However, some challenges such as dispersion issues and high costs, hinder the direct incorporation of graphene-based reinforcement fillers into cementitious composites for industrial production. The combination of graphene with conventional fibers to reinforce cement hence appears as a more promising pathway especially towards the commercialization of graphene for cementitious materials.  This entry introduces the preparation and the enhancement of hybrid graphene-fiber reinforced cementitious composites.
  • 1.5K
  • 09 Oct 2021
Topic Review
Approaches to Preceramic Polymer Fiber Fabrication
The demand for lightweight, high-modulus, and temperature-resistant materials for aerospace and other high-temperature applications has contributed to the development of ceramic fibers that exhibit most of the favorable properties of monolithic ceramics. The preceramic polymer requirements for a fiber concoction include: (1) appropriate rheology for non-Newtonian flows of materials and appropriate viscosity during rotation; (2) reactivity to fuse the fibers for subsequent pyrolysis; (3) controlled degradation during pyrolysis to prevent disorders of the structure, such as scattered material, and to produce high-density fibers with high ceramic performance; (4) controlled formation of nano- or microstructures.
  • 1.5K
  • 15 Jul 2022
Topic Review
Biomass Fly Ash-Based Geopolymers
The production of conventional cement involves high energy consumption and the release of substantial amounts of carbon dioxide (CO2), exacerbating climate change. Additionally, the extraction of raw materials, such as limestone and clay, leads to habitat destruction and biodiversity loss. Geopolymer technology offers a promising alternative to conventional cement by utilizing industrial byproducts and significantly reducing carbon emissions.
  • 1.5K
  • 10 Aug 2023
Topic Review
Packaging Materials
The entry packaging materials is intended to summarize the recent progress in the work of fractal theory in packaging material to provide important insights into applied research on fractal in packaging materials. The fractal analysis methods employed for inorganic materials such as metal alloys and ceramics, polymers, and their composites are reviewed from the aspects of fractal feature extraction and fractal dimension calculation methods. Through the fractal dimension of packaging materials and the fractal in their preparation process, the relationship between the fractal characteristic parameters and the properties of packaging materials is discussed. The fractal analysis method can qualitatively and quantitatively characterize the fractal characteristics, microstructure, and properties of a large number of various types of packaging materials. 
  • 1.4K
  • 06 Apr 2021
Topic Review
CAD/CAM Ceramics
CAD/CAM ceramics present a promising alternative to metal-ceramic fixed dental prostheses.
  • 1.4K
  • 23 Jun 2021
Topic Review
Overview of the Development of ZnO-Based Varistors
Voltage surge protection devices (SPDs) or surge arresters rely on metal oxide varistors (MOVs) to safeguard electrical equipment in consumer electronics and industrial electric power systems against the destructive temporary overvoltages (TOVs) resulting from transient switching surges or lightning strikes. The primary function of voltage-sensitive MOVs in SPDs is to prevent the damage caused by high-energy transients by clamping or eliminating them when a surge occurs. These MOVs are mounted in parallel with the components that they are designed to protect.
  • 1.4K
  • 29 May 2023
Topic Review Peer Reviewed
Inhomogeneities in Glass: From Defects to Functional Nanostructures
Glass inhomogeneities represent variations in the structural or compositional uniformity of glass, traditionally associated with process-related defects such as striae, bubbles, stones, and inclusions that impair transparency and mechanical stability. These “technological” inhomogeneities emerge during melting, forming, or annealing, and have long been the focus of industrial elimination strategies. However, recent developments in glass science and nanotechnology have reframed inhomogeneity as a potential asset. When precisely engineered at the nanoscale, inhomogeneities, such as nanocrystals, metal or semiconductor nanoparticles, and nanopores, can enhance glass with tailored optical and photonic functionalities, including upconversion luminescence, plasmonic response, nonlinear refractive behavior, and sensing capabilities. This entry provides an integrated perspective on the evolution of glass inhomogeneities, tracing the shift from defect suppression to functional nanostructuring. It discusses both the traditional classification and mitigation of detrimental defects, and the design principles enabling the intentional incorporation of beneficial nanoinhomogeneities, particularly in the context of optics and photonics. The utilization of engineered inhomogeneities in nuclear waste glasses is also discussed.
  • 1.4K
  • 17 Sep 2025
Topic Review
Ceramic Nanostructured Coatings
Ceramic nanocoatings are widely used in many applications such as engine valves, boiler parts, automotive body parts, orthopaedic implants, etc., due to their excellent resistance to corrosion, oxidation and wear, as compared to metals, especially in high-temperature applications. They also have excellent thermal and electrical insulation properties.
  • 1.3K
  • 29 Apr 2022
Topic Review
Effect of Grain Size on B4C and β-SiC
Nanocrystalline materials are categorized as having average grain sizes below 100 nm with a larger volume fraction of grain boundaries (GBs), leading to significant changes in their mechanical, physical, and chemical properties. Lightweight polycrystalline ceramics possess promising physical, chemical, and mechanical properties, which can be used in a variety of important structural applications. However, these ceramics with coarse-grained structures are brittle and have low fracture toughness due to their rigid covalent bonding (more often consisting of high-angle grain boundaries) that can cause catastrophic failures. Owing to these failure mechanisms in polycrystalline ceramics, a reduction in grain size to a nano-regime, which is expected to enhance the combination of hardness (or strength), toughness, and ductility, provides a promising nanomechanical research direction compared to counterpart micro-sized polycrystalline ceramics. Apart from the effects of grain size itself, the mechanical properties of B4C and SiC also show high dependency on their properties such as composition variation, anisotropy, density, etc.
  • 1.3K
  • 28 Sep 2022
Topic Review
Gelatin and Bioactive Glass Composites
Nano-/micron-sized bioactive glass (BG) particles are attractive candidates for both soft and hard tissue engineering. They can chemically bond to the host tissues, enhance new tissue formation, activate cell proliferation, stimulate the genetic expression of proteins, and trigger unique anti-bacterial, anti-inflammatory, and anti-cancer functionalities. Composites based on biopolymers and BG particles have been developed with various state-of-the-art techniques for tissue engineering. Gelatin, a semi-synthetic biopolymer, has attracted the attention of researchers because it is derived from the most abundant protein in the body, viz., collagen. It is a polymer that can be dissolved in water and processed to acquire different configurations, such as hydrogels, fibers, films, and scaffolds.
  • 1.3K
  • 28 Jan 2023
Topic Review
Polymer-Derived Ceramics Technology
Ceramics have become indispensable materials for a wide range of industrial applications due to their excellent properties.
  • 1.3K
  • 01 Dec 2022
Topic Review
Geopolymers vs. Cement Matrix Materials
Geopolymers are spreading more and more in the cementitious materials field, exhibiting technological properties that are highly competitive to conventional Portland concrete mixes.
  • 1.3K
  • 24 Aug 2021
Topic Review
Preceramic Polymers for Additive Manufacturing of Silicate Ceramics
The utilization of preceramic polymers (PCPs) to produce both oxide and non-oxide ceramics has caught significant interest, owing to their exceptional characteristics. Diverse types of polymer-derived ceramics (PDCs) synthesized by using various PCPs have demonstrated remarkable characteristics such as exceptional thermal stability, resistance to corrosion and oxidation at elevated temperatures, biocompatibility, and notable dielectric properties, among others. The application of additive manufacturing techniques to produce PDCs opens up new opportunities for manufacturing complex and unconventional ceramic structures with complex designs that might be challenging or impossible to achieve using traditional manufacturing methods. This is particularly advantageous in industries like aerospace, automotive, and electronics. 
  • 1.2K
  • 19 Dec 2023
Topic Review
Deposition Parameters on the Microstructure of Multilayer Films
Multilayer films with high-density layer interfaces have been studied widely because of the unique mechanical and functional properties. Magnetron sputtering is widely chosen to fabricate multilayer films because of the convenience in controlling the microstructure. 
  • 1.2K
  • 28 Dec 2021
Topic Review
Research Progress on Preparation Methods of Skutterudites
Thermoelectric material is a new energy material that can realize direct conversion of thermal energy and electric energy. It has important and wide applications in the fields of the recycling of industrial waste heat and automobile exhaust, efficient refrigeration of the next generation of integrated circuits and full spectrum solar power generation. Skutterudites thermoelectric material has attracted much attention because of their excellent electrical transport performance in the medium temperature region. In order to obtain skutterudites thermoelectric materials with excellent properties, it is indispensable to choose an appropriate preparation method.
  • 1.2K
  • 28 Sep 2022
Topic Review
Crystal Structure of GeFe2O4
The brunogeierite GeFe2O4 is a rare mineral of germanium, with a normal spinel structure and amazing functional properties. Its spectroscopic, optical, magnetic and electronic properties are known. For many years it was left behind, but recently a renewed interest in this oxide has arisen, particularly for its application in the electrochemical field, as anode in Lithium Ion and Sodium Ion Batteries and as electrocatalyst for urea oxidation reaction.
  • 1.1K
  • 22 Dec 2022
  • Page
  • of
  • 4
Academic Video Service