Topic Review
Image-Guided Nanotherapeutic Delivery
A certain class of multifunctional nanomaterials serves as a delivery platform for controlled drug release under image guidance. They have shown significant therapeutic potential and broad applications whereas their design specifics remain a subject of continued interest primarily due to multifunctional factors involved, ranging from nanomaterial properties, imaging modalities, and therapeutic agents to activation strategies.
  • 590
  • 25 Jan 2021
Topic Review
Electrospinning of Biomedical Nanofibers/Nanomembranes
Nanotechnology has attracted great attention from researchers in modern science because nanomaterials have innovative and superior physical, chemical, and biological properties, and they can be altered and modified accordingly. As particles get smaller, their surface area increases compared to their volume. Electrospinning is one of the advanced techniques to produce ultrathin nanofibers and membranes, and it is one of the best ways to create continuous nanomaterials with variable biological, chemical, and physical properties. The produced fibers can be utilized in various domains such as wound dressing, drug release, enzyme immobilization, etc. 
  • 590
  • 22 Sep 2022
Topic Review
DSResSol
Protein solubility is an important thermodynamic parameter that is critical for the characterization of a protein’s function, and a key determinant for the production yield of a protein in both the research setting and within industrial (e.g., pharmaceutical) applications. Experimental approaches to predict protein solubility are costly, time-consuming, and frequently offer only low success rates. To reduce cost and expedite the development of therapeutic and industrially relevant proteins, a highly accurate computational tool for predicting protein solubility from protein sequence is sought. While a number of in silico prediction tools exist, they suffer from relatively low prediction accuracy, bias toward the soluble proteins, and limited applicability for various classes of proteins. In this study, researchers developed a novel deep learning sequence-based solubility predictor, DSResSol, that takes advantage of the integration of squeeze excitation residual networks with dilated convolutional neural networks and outperforms all existing protein solubility prediction models. This model captures the frequently occurring amino acid k-mers and their local and global interactions and highlights the importance of identifying long-range interaction information between amino acid k-mers to achieve improved accuracy, using only protein sequence as input. DSResSol outperforms all available sequence-based solubility predictors by at least 5% in terms of accuracy when evaluated by two different independent test sets. Compared to existing predictors, DSResSol not only reduces prediction bias for insoluble proteins but also predicts soluble proteins within the test sets with an accuracy that is at least 13% higher than existing models. Researchers derive the key amino acids, dipeptides, and tripeptides contributing to protein solubility, identifying glutamic acid and serine as critical amino acids for protein solubility prediction. Overall, DSResSol can be used for the fast, reliable, and inexpensive prediction of a protein’s solubility to guide experimental design.
  • 589
  • 14 Jan 2022
Topic Review
Bone Hyperthermia Treatments: Temperature Monitoring
Bone metastases and osteoid osteoma (OO) have a high incidence in patients facing primary lesions in many organs. In this arena, hyperthermia treatments (HTs) have gaining momentum as valuable alternatives to traditional therapies owing to their minimally invasive nature, the success rate in tumor control and the immediate effect in pain relief affecting the majority of patients. Temperature monitoring during HTs may significantly improve the clinical outcomes since the amount of thermal injury depends on the tissue temperature and the exposure time. This is particularly relevant in bone tumors due to the adjacent vulnerable structures (e.g., spinal cord and nerve roots).
  • 588
  • 01 Sep 2021
Topic Review
Sensorless/Sensor-Based Upper Limb Exoskeletons
Sensorless and sensor-based upper limb exoskeletons that enhance or support daily motor function are limited for children.
  • 587
  • 15 Jun 2021
Topic Review
Nerve Guidance Conduits
Nerve guidance conduits (NGCs) are tubular biostructures to bridge nerve injury sites via orienting axonal growth in an organized fashion as well as supplying a supportively appropriate microenvironment.
  • 586
  • 09 Feb 2022
Topic Review
Graphene-Based Biosensors to Detect Dopamine
Parkinson’s disease (PD) is a neurodegenerative disease in which the neurotransmitter dopamine (DA) depletes due to the progressive loss of nigrostriatal neurons. Therefore, DA measurement might be a useful diagnostic tool for targeting the early stages of PD, as well as helping to optimize DA replacement therapy. Moreover, DA sensing appears to be a useful analytical tool in complex biological systems in PD studies. Graphene-based DA sensors are emerging analytical tools for PD diagnostics.
  • 585
  • 04 Nov 2021
Topic Review
Biofunctionalization of the Tissue Engineered Heart Valves
Valve replacement is the mainstay of treatment for end-stage valvular heart disease, but varying degrees of defects exist in clinically applied valve implants. A mechanical heart valve requires long-term anti-coagulation, but the formation of blood clots is still inevitable. A biological heart valve eventually decays following calcification due to glutaraldehyde cross-linking toxicity and a lack of regenerative capacity. The goal of tissue-engineered heart valves is to replace normal heart valves and overcome the shortcomings of heart valve replacement commonly used in clinical practice. Surface biofunctionalization has been widely used in various fields of research to achieve functionalization and optimize mechanical properties.
  • 583
  • 28 Sep 2022
Topic Review
Advancements in Noble Metal Nanoparticles-Based Point-of-Care Testing
Noble metal nanoparticles (NM NPs) have been used for POC testing for decades. The most known example might be the lateral flow assay (LFA, or test strip), where Au NPs are usually utilized as colorimetric labels owing to their outstanding optical properties. Over-the-counter pregnancy tests and the recent COVID-19 antigen rapid tests are representative examples of the lateral flow assays (LFA). Over the last couple of decades, engineered NM NPs have been extensively used for the point-of-care (POC) tests of various platforms beyond the LFA, despite most of them being in early stages of commercialization. This recent NM NPs-based POC testing techniques with innovative designs are discussed.
  • 581
  • 29 Nov 2022
Topic Review
Novel Heart Organoid Generation Methods
Organoids are three-dimensional in vitro cell constructs that recapitulate organ properties and structure to a significant extent. They constitute particularly useful models to study unapproachable states in humans, such as embryonic and fetal development, or early disease progression in adults. In recent years organoids have been implemented to model a wide range of different organs and disease conditions. However, the technology for their fabrication and application to cardiovascular studies has been lagging significantly when compared to other organoid types (e.g., brain, pancreas, kidney, intestine). This is a surprising fact since cardiovascular disease (CVD) and congenital heart disease (CHD) constitute the leading cause of mortality and morbidity in the developed world, and the most common birth defect in humans, respectively, and collectively constitute one of the largest unmet medical needs in the modern world. There is a critical need to establish in vitro models of the human heart that faithfully recapitulate its biology and function, thus enabling basic and translational studies to develop new therapeutics. Generating heart organoids that truly resemble the heart has proven difficult due to its complexity, but significant progress has been made recently to overcome this obstacle.
  • 580
  • 13 Sep 2021
Topic Review
Multi-Domain Model of Anterior Cruciate Ligament
The anterior cruciate ligament’s (ACL) mechanics is an important factor governing the ligament’s integrity and, hence, the knee joint’s response. Despite many investigations in this area, the cause and effect of injuries remain unclear or unknown. This may be due to the complexity of the direct link between macro- and micro-scale damage mechanisms. In the first part of this investigation, a three-dimensional coarse-grained model of collagen fibril (type I) was developed using a bottom-up approach to investigate deformation mechanisms under tensile testing. 
  • 580
  • 27 Oct 2021
Topic Review
Microfluidic Devices for HIV Diagnosis at Point-of-Care Settings
Human immunodeficiency virus (HIV) is a global epidemic; however, many individuals are able to obtain treatment and manage their condition. Progression to acquired immunodeficiency syndrome (AIDS) occurs during late-stage HIV infection, which compromises the immune system, making it susceptible to infections. While there is no cure, antiretroviral therapy can be used provided that detection occurs, preferably during the early phase. However, the detection of HIV is expensive and resource-intensive when tested with conventional methods, such as flow cytometry, polymerase chain reaction (PCR), or enzyme-linked immunosorbent assays (ELISA). Improving disease detection in resource-constrained areas requires equipment that is affordable, portable, and can deliver rapid results. Microfluidic devices have transformed many benchtop techniques to on-chip detection for portable and rapid point-of-care (POC) testing. These devices are cost-effective, sensitive, and rapid and can be used in areas lacking resources. Moreover, their functionality can rival their benchtop counterparts, making them efficient for disease detection.
  • 579
  • 15 Dec 2022
Topic Review
Practical Considerations for Next-Generation Adjuvant Development and Translation
Throughout the last two decades, there has been increasing focus on the discovery and translation of new immune-stimulating agents. These compounds are often collectively referred to as adjuvants due to their precedent of use in vaccine development. There has been an expansion in the application of adjuvants in oncology and other areas as the understanding and definition of adjuvants continue to grow. Adjuvants stimulate key cell types in the innate immune system and can influence the scale and class of immune response directed towards a given antigen or antigens.
  • 579
  • 07 Jul 2023
Topic Review
Homocysteine Solution-Induced Response in OECTs Devices
Homocysteine (Hcy) is a non-protein, sulfur-containing amino acid, which is recognized as a possible risk factor for coronary artery and other pathologies when its levels in the blood exceed the normal range of between 5 and 12 μmol/L (hyperhomocysteinemia). At present, standard procedures in laboratory medicine, such as high-performance liquid chromatography (HPLC), are commonly employed for the quantitation of total Hcy (tHcy), i.e., the sum of the protein-bound (oxidized) and free (homocystine plus reduced Hcy) forms, in biological fluids (particularly, serum or plasma). Here, the response of Aerosol Jet-printed organic electrochemical transistors (OECTs), in the presence of either reduced (free) and oxidized Hcy-based solutions, was analyzed. Two different experimental protocols were followed to this end: the former consisting of gold (Au) electrodes’ biothiol-induced thiolation, while the latter simply used bare platinum (Pt) electrodes. Electrochemical impedance spectroscopy (EIS) analysis was performed both to validate the gold thiolation protocol and to gain insights into the reduced Hcy sensing mechanism by the Au-gated OECTs, which provided a final limit of detection (LoD) of 80 nM. For the OECT response based on Platinum gate electrodes, on the other hand, a LoD of 180 nM was found in the presence of albumin-bound Hcy, with this being the most abundant oxidized Hcy-form (i.e., the protein-bound form) in physiological fluids. Despite the lack of any biochemical functionalization supporting the response selectivity, the findings discussed in this work highlight the potential role of OECT in the development of low-cost point-of-care (POC) electronic platforms that are suitable for the evaluation, in humans, of Hcy levels within the physiological range and in cases of hyperhomocysteinemia.
  • 574
  • 16 Nov 2021
Topic Review
Methods for Optimization of Bone Scaffold
As the application of bone scaffolds becomes more and more widespread, the requirements for the high performance of bone scaffolds are also increasing. The stiffness and porosity of porous structures can be adjusted as needed, making them good candidates for repairing damaged bone tissues. However, the development of porous bone structures is limited by traditional manufacturing methods. Today, the development of additive manufacturing technology has made it very convenient to manufacture bionic porous bone structures as needed. In the present text, the current state-of-the-art optimization techniques for designing the scaffolds and the settings of different optimization methods are introduced. Additionally, various design methods for bone scaffolds are reviewed. Furthermore, the challenges in designing high performance bone scaffolds and the future developments of bone scaffolds are also presented.
  • 574
  • 13 Feb 2023
Topic Review
Near-Infrared Spectroscopy in TBI
Traumatic brain injury (TBI) occurs when a sudden trauma causes damage to the brain. TBI can result when the head suddenly and violently impacts an object or when an object pierces the skull and enters brain tissue. Secondary injuries after traumatic brain injury (TBI) can lead to impairments on cerebral oxygenation and autoregulation. Considering that secondary brain injuries often take place within the first hours after the trauma, noninvasive monitoring might be helpful in providing early information on the brain’s condition. Near-infrared spectroscopy (NIRS) is an emerging noninvasive monitoring modality based on chromophore absorption of infrared light with the capability of monitoring perfusion of the brain. This study investigates the main applications of NIRS in TBI monitoring and presents a thorough revision of those applications on oxygenation and autoregulation monitoring. Databases such as PubMed, EMBASE, Web of Science, Scopus, and Cochrane library were utilized in identifying 72 publications spanning between 1977 and 2020 which were directly relevant to this study. The majority of the evidence found used NIRS for diagnosis applications, especially in oxygenation and autoregulation monitoring (59%).
  • 571
  • 06 Apr 2021
Topic Review
Anorectal Mechanosensory Physiology Bionics Assessment
Recently, a simulated stool named Fecobionics was developed. It has the consistency and shape of normal stool. Fecobionics records a variety of parameters including pressures, bending, and shape changes. It has been used to study defecation patterns in large animals and humans, including patients with symptoms of obstructed defecation and fecal incontinence. Recently, it was applied in a canine colon model where it revealed patterns consistent with shallow waves originating from slow waves generated by the interstitial Cells of Cajal. 
  • 570
  • 06 Mar 2021
Topic Review
Biomaterials for Orthopaedic Surgery and Traumatology
The principal features essential for the success of an orthopaedic implant are its shape, dimensional accuracy, and adequate mechanical properties. Unlike other manufactured products, chemical stability and toxicity are of increased importance due to the need for biocompatibility over an implants life which could span several years. Thus, the combination of mechanical and biological properties determines the clinical usefulness of biomaterials in orthopaedic and musculoskeletal trauma surgery. Materials commonly used for these applications include stainless steel, cobalt-chromium and titanium alloys, ceramics, polyethylene, and poly(methyl methacrylate) (PMMA) bone cement.
  • 567
  • 09 Sep 2022
Topic Review
Blood Flow in Microchannels
Blood flow in large arteries or biomedical devices can be treated as a homogenous fluid where its particulate nature can be ignored. However, in reality, blood is a suspension of deformable cells in a viscous fluid plasma. Hence, in microcirculation and microchannels, it is fundamental to take into account the effects of the multiphase properties of the blood and to study the blood flow behaviour at a cellular level. A clear example of the multiphase nature of the blood is the formation of a plasma layer (or cell-free layer) around the walls of the microchannels.
  • 566
  • 30 Mar 2021
Topic Review
Artificial Intelligence-Assisted Ultrasound Scanning
Ultrasound (US) is a flexible imaging modality used globally as a first-line medical exam procedure in many different clinical cases. It benefits from the continued evolution of ultrasonic technologies and a well-established US-based digital health system. Nevertheless, its diagnostic performance still presents challenges due to the inherent characteristics of US imaging, such as manual operation and significant operator dependence. Artificial intelligence (AI) has proven to recognize complicated scan patterns and provide quantitative assessments for imaging data. 
  • 564
  • 17 Apr 2023
  • Page
  • of
  • 27
ScholarVision Creations