Topic Review
Drug Delivery by Buccal/Sublingual Microenvironmental pH Modification
Many drug candidates are poorly water-soluble. Microenvironmental pH (pHM) modification in buccal/sublingual dosage forms has attracted increasing interest as a promising pharmaceutical strategy to enhance the oral mucosal absorption of drugs with pH-dependent solubility. Optimizing drug absorption at the oral mucosa using pHM modification is considered to be a compromise between drug solubility and drug lipophilicity (Log D)/permeation. To create a desired pHM around formulations during the dissolution process, a suitable amount of pH modifiers should be added in the formulations, and the appropriate methods of pHM measurement are required. 
  • 953
  • 15 Mar 2023
Topic Review
Three-Dimensional In Vitro Cell Culture Models
Despite tremendous advancements in technologies and resources, drug discovery still remains a tedious and expensive process. Though most cells are cultured using 2D monolayer cultures, due to lack of specificity, biochemical incompatibility, and cell-to-cell/matrix communications, they often lag behind in the race of modern drug discovery. There exists compelling evidence that 3D cell culture models are quite promising and advantageous in mimicking in vivo conditions. It is anticipated that these 3D cell culture methods will bridge the translation of data from 2D cell culture to animal models. Although 3D technologies have been adopted widely these days, they still have certain challenges associated with them, such as the maintenance of a micro-tissue environment similar to in vivo models and a lack of reproducibility. However, newer 3D cell culture models are able to bypass these issues to a maximum extent.
  • 953
  • 10 Aug 2022
Topic Review
MiRNA-7
MicroRNAs (miRNAs, miRs) are small non-coding RNA (ncRNA) molecules capable of regulating post-transcriptional gene expression. Imbalances in the miRNA network have been associated with the development of many pathological conditions and diseases, including cancer. Recently, miRNAs have also been linked to the phenomenon of multidrug resistance (MDR). MiR-7 is one of the extensively studied miRNAs and its role in cancer progression and MDR modulation has been highlighted. MiR-7 is engaged in multiple cellular pathways and acts as a tumor suppressor in the majority of human neoplasia. Its depletion limits the effectiveness of anti-cancer therapies, while its restoration sensitizes cells to the administered drugs.
  • 949
  • 25 Feb 2021
Topic Review
Endocannabinoid System Present in the Glioblastoma Tumour Microenvironment
The highly aggressive and invasive glioblastoma (GBM) tumour is the most malignant lesion among adult-type diffuse gliomas, representing the most common primary brain tumour in the neuro-oncology practice of adults. With a poor overall prognosis and strong resistance to treatment, this nervous system tumour requires new, innovative treatment. GBM is a polymorphic tumour consisting of an array of stromal cells and various malignant cells contributing to tumour initiation, progression, and treatment response. Cannabinoids possess anti-cancer potencies against glioma cell lines and in animal models. To improve existing treatment, cannabinoids as functionalised ligands on nanocarriers were investigated as potential anti-cancer agents. The GBM tumour microenvironment is a multifaceted system consisting of resident or recruited immune cells, extracellular matrix components, tissue-resident cells, and soluble factors. 
  • 949
  • 31 Jan 2024
Topic Review
Nrf2-Keap1-ARE Signaling and IRI
Ischemia/reperfusion (I/R) injury is associated with substantial clinical implications, including a wide range of organs such as the brain, kidneys, lungs, heart, and many others. I/R injury (IRI) occurs due to the tissue injury following the reestablishment of blood supply to ischemic tissues, leading to enhanced aseptic inflammation and stimulation of oxidative stress via reactive oxygen and nitrogen species (ROS/RNS). Since ROS causes membrane lipids’ peroxidation, triggers loss of membrane integrity, denaturation of proteins, DNA damage, and cell death, oxidative stress plays a critical part in I/R pathogenesis. Therefore, ROS regulation could be a promising therapeutic strategy for IRI. In this context, Nrf2 (NF-E2-related factor 2) is a transcription factor that regulates the expression of several factors involved in the cellular defense against oxidative stress and inflammation, including heme oxygenase-1 (HO-1). 
  • 946
  • 01 Jun 2021
Topic Review
Clinical Trials of Parkinson’s Disease
Parkinson’s disease (PD) is a progressive neurodegenerative disorder that currently has no cure, but treatments are available to improve PD symptoms and maintain quality of life.
  • 942
  • 03 Aug 2021
Topic Review
Honey in Reversing Metabolic Syndrome
Honey is a natural by-product from the flower nectar and aerodigestive tract of honey bees, which contains various complex biochemical components. Fructose (36%) and glucose (31%) are the main carbohydrate constituents of honey.
  • 941
  • 18 Mar 2021
Topic Review
Treatment of Endometriosis
Endometriosis is a gynecological condition characterized by the growth of endometrium-like tissues inside and outside the pelvic cavity. The evolution of the disease can lead to infertility in addition to high treatment costs. The available medications are only effective in treating endometriosis-related pain.   
  • 939
  • 12 Jul 2022
Topic Review
Glycemic Control
Experimental evidence suggests that cadmium (Cd) boosts oxidative stress that may result in toxicity on the endocrine system also in humans. The aim of this study was to investigate the glycemic control and oxidative stress markers in male adolescents with increased urinary levels of cadmium. We investigated 111 males, aged 12–14 years, living in a polluted area of Sicily and a control age-matched population (n = 60) living 28–45 km far from the polluted site. Malondialdehyde (MDA), total antioxidant activity (TAC), metallothionein-1A (MT-1A) gene expression, insulin resistance by the homeostatic model assessment (HOMA-IR), and urinary cadmium were investigated. Cd levels were significantly higher in adolescents living in the polluted area than in control age-matched subjects. Adolescents with elevated Cd levels had a significant increase in MDA, MT-1A, and HOMA-IR and reduced TAC compared to the control group. A robust correlation was found between urinary cadmium and MT-1A, HOMA-IR, and MDA whereas an inverse correlation was identified between urinary cadmium and TAC. This study indicates that cadmium burden alters glycemic control in adolescents and suggests that oxidative stress plays a key role in cadmium-induced insulin resistance, increasing the risk of developing metabolic disorders.
  • 937
  • 01 Nov 2020
Topic Review
Marine-Derived Secondary Metabolites
Sessile organisms such as seaweeds, corals, and sponges continuously adapt to both abiotic and biotic components of the ecosystem. This extremely complex and dynamic process often results in different forms of competition to ensure the maintenance of an ecological niche suitable for survival. A high percentage of marine species have evolved to synthesize biologically active molecules, termed secondary metabolites, as a defense mechanism against the external environment. These natural products and their derivatives may play modulatory roles in the epigenome and in disease-associated epigenetic machinery. Epigenetic modifications also represent a form of adaptation to the environment and confer a competitive advantage to marine species by mediating the production of complex chemical molecules with potential clinical implications. Bioactive compounds are able to interfere with epigenetic targets by regulating key transcriptional factors involved in the hallmarks of cancer through orchestrated molecular mechanisms, which also establish signaling interactions of the tumor microenvironment crucial to cancer phenotypes.
  • 937
  • 26 Jan 2021
Topic Review
Thymoquinone in Cancers Therapy
To date, natural products are widely used as pharmaceutical agents for many human diseases and cancers. One of the most popular natural products that have been studied for anticancer properties is thymoquinone (TQ). As a bioactive compound of Nigella sativa, TQ has shown anticancer activities through the inhibition of cell proliferation, migration, and invasion. The anticancer efficacy of TQ is being investigated in several human cancers such as pancreatic cancer, breast cancer, colon cancer, hepatic cancer, cervical cancer, and leukemia.
  • 934
  • 07 May 2021
Topic Review
Stability and Activity of L-ASNases
L-asparaginases (EC 3.5.1.1) are a family of enzymes that catalyze the hydrolysis of L-asparagine to L-aspartic acid and ammonia. These proteins with different biochemical, physicochemical and pharmacological properties are found in many organisms, including bacteria, fungi, algae, plants and mammals. To date, asparaginases from E. coli and Dickeya dadantii (formerly known as Erwinia chrysanthemi) are widely used in hematology for the treatment of lymphoblastic leukemias. 
  • 933
  • 24 Mar 2022
Topic Review
DNA-Based Nanomaterials as Drug Delivery Platforms in Tumors
DNA nanotechnology has significantly advanced and might be used in biomedical applications, drug delivery, and cancer treatment. DNA nanomaterials are widely used in biomedical research involving biosensing, bioimaging, and drug delivery since they are remarkably addressable and biocompatible. Gradually, modified nucleic acids have begun to be employed to construct multifunctional DNA nanostructures with a variety of architectural designs. Aptamers are single-stranded nucleic acids (both DNAs and RNAs) capable of self-pairing to acquire secondary structure and of specifically binding with the target. Diagnosis and tumor therapy are prospective fields in which aptamers can be applied. Many DNA nanomaterials with three-dimensional structures have been studied as drug delivery systems for different anticancer medications or gene therapy agents. Different chemical alterations can be employed to construct a wide range of modified DNA nanostructures. Chemically altered DNA-based nanomaterials are useful for drug delivery because of their improved stability and inclusion of functional groups.
  • 931
  • 27 Apr 2023
Topic Review
Protease-Activated Receptors
Protease-activated receptors (PARs) are a class of G protein-coupled receptors (GPCRs) with a unique mechanism of activation, prompted by a proteolytic cleavage in their N-terminal domain that uncovers a tethered ligand, which binds and stimulates the same receptor.
  • 929
  • 20 Feb 2021
Topic Review
The Labdane Diterpenoid-Andrographolide
The diterpene lactone andrographolide, isolated from Andrographis paniculata (Burm.f.) Wall. ex Nees that showed shows a plethora of biological activities, including not only anti-cancer activity, but also anti-inflammatory, anti-viral, anti-bacterial, neuroprotective, hepatoprotective, hypoglycemic, and immunomodulatory properties. Andrographolide has been shown to act as an anti-tumor drug by affecting specific molecular targets that play a part in the development and progression of several cancer types including breast, lung, colon, renal, and cervical cancer, as well as leukemia and hepatocarcinoma.
  • 928
  • 22 May 2023
Topic Review
Lectin Protein
Lectins are natural proteins with the ability to bind specific carbohydrates related to various microorganisms, including viruses, bacteria, fungi and parasites. Lectins have the ability to agglutinate and neutralize these pathogeneses. The delivery of the encapsulated antiviral agents or vaccines across the cell membrane can be possible by functionalized micellar and liposomal formulations. 
  • 926
  • 14 Apr 2022
Topic Review
Fibrodysplasia ossificans progressiva (FOP)
Fibrodysplasia ossificans progressiva (FOP) is an extremely rare heritable disorder of connective tissues characterized by progressive heterotopic ossification in various skeletal sites.
  • 925
  • 28 Sep 2020
Topic Review
Endometrial Hyperplasia
Endometrial hyperplasia without cytological atypia is commonly treated with progestins, but other treatments may be available with equivalent efficacy and reduced side effects. Here, we evaluate the effect of genistein aglycone on angiogenesis and apoptosis-related markers women with endometrial hyperplasia. Premenopausals (n=38) with nonatypical endometrial hyperplasia were administered either genistein aglycone (54 mg/day, n=19) or norethisterone acetate (10 mg/day, n=19) on days 16–25 of the menstrual cycle and evaluated for 6 months. Biopsies were taken during hysteroscopy at baseline and 6 months, and symptoms including excessive uterine bleeding were assessed at baseline and 3 and 6 months following recruitment. The expression of angiogenesis (Vegf), epithelial (Egf and Tgfb), and apoptosis-related (Bax, Bcl-2, and Casp-9) molecules, were assessed in uterine biopsies at baseline and after 6 months of therapy. Follicle-stimulating hormone, luteinizing hormone, estradiol, SHBG, and progesterone levels were also measured. After 6 months, 42% of genistein aglycone-administered patients had a significant improvement of symptoms compared to 47% of norethisterone acetate subjects. No significant differences were noted in hormone levels for any treatment. Gene expression revealed a significant reduction in Vegf, Egf, and Tgfb (P<0.05 versus baseline), and an increase in proapoptotic molecules (Bax and Casp-9), with a concomitant decrease in Bcl-2 values (P<0.05) in both groups. These results suggest that genistein aglycone might be useful for the management of endometrial hyperplasia without atypia in women who cannot or do not wish to be treated with progestin.
  • 924
  • 01 Nov 2020
Topic Review
Edible Flowers
Edible flowers have been widely consumed for ages until now. The attractive colors and shapes, exotic aroma, and delightful taste make edible flowers very easy to attain. Moreover, they also provide health benefits for consumers due to the unique composition and concentration of antioxidant compounds in the matrices. Knowing the bioactive compounds and their functional properties from edible flowers is necessary to diversify the usage and reach broader consumers.
  • 924
  • 01 Jun 2021
Topic Review
The Use of Dendrimers for Biomedical Applications
Dendrimers are three-dimensional nanostructures with a high degree of molecular homogeneity, adjustable size, multivalence, high surface functionality, and high aqueous solubility. Due to these important and attractive properties, dendrimers are already being used to deliver a number of drugs and are being explored as promising carriers for nucleic acid-based vaccines. Here summarizes the literature data on the biosafety of some dendrimers has been evaluated in several clinical trials.
  • 924
  • 25 Apr 2023
  • Page
  • of
  • 53
ScholarVision Creations