Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 -- 4335 2022-08-26 11:26:33 |
2 layout Meta information modification 4335 2022-08-29 06:50:25 |

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Khattar, S.;  Khan, S.A.;  Zaidi, S.A.A.;  Darvishikolour, M.;  Farooq, U.;  Naseef, P.P.;  Kurunian, M.S.;  Khan, M.Z.;  Shamim, A.;  Khan, M.M.U.; et al. Resveratrol from Dietary Supplement to a Drug Candidate. Encyclopedia. Available online: https://encyclopedia.pub/entry/26541 (accessed on 24 June 2024).
Khattar S,  Khan SA,  Zaidi SAA,  Darvishikolour M,  Farooq U,  Naseef PP, et al. Resveratrol from Dietary Supplement to a Drug Candidate. Encyclopedia. Available at: https://encyclopedia.pub/entry/26541. Accessed June 24, 2024.
Khattar, Shivani, Sauban Ahmed Khan, Syed Amir Azam Zaidi, Mahdi Darvishikolour, Uzma Farooq, Punnoth Poonkuzhi Naseef, Mohamed Saheer Kurunian, Mohammed Zaafar Khan, Athar Shamim, Mohd Masih Uzzaman Khan, et al. "Resveratrol from Dietary Supplement to a Drug Candidate" Encyclopedia, https://encyclopedia.pub/entry/26541 (accessed June 24, 2024).
Khattar, S.,  Khan, S.A.,  Zaidi, S.A.A.,  Darvishikolour, M.,  Farooq, U.,  Naseef, P.P.,  Kurunian, M.S.,  Khan, M.Z.,  Shamim, A.,  Khan, M.M.U.,  Iqbal, Z., & Mirza, M.A. (2022, August 26). Resveratrol from Dietary Supplement to a Drug Candidate. In Encyclopedia. https://encyclopedia.pub/entry/26541
Khattar, Shivani, et al. "Resveratrol from Dietary Supplement to a Drug Candidate." Encyclopedia. Web. 26 August, 2022.
Resveratrol from Dietary Supplement to a Drug Candidate
Edit

Resveratrol (RVT) is a well known phyto-chemical and is widely used in dietary supplements and botanical products. It shows a wide range of pharmacological/beneficial effects. it can be a potential candidate to be developed as phyto-pharmaceutical. Multiple diseases are reported to be treated by the therapeutic effect of RVT since it has antioxidant, anti-cancer activity and anti-inflammatory activities. It also has a major role in diabetes, arthritis, cardiac disorder and platelet aggregation etc. The major requirements are establishments regarding safety, efficacy profile and physicochemical characterization. 

antioxidants resveratrol anti-aging

1. Introduction

Resveratrol (3, 4′, 5-trihydroxystilbene) is a stilbenoid class of compound and works as phytoalexin (i.e., a substance that is produced by plant tissues in response to contact with a parasite and specifically inhibits the growth of that parasite) [1]. Because of its intriguing pharmacological potential, it has recently gained a lot of study attention. Early studies have illustrated the presence of substantial amounts of Resveratrol (RVT) in wounded, infected, and UV-treated leaves [2]. It is primarily found in grapes, peanuts, and berries. In the 1940s, RVT was discovered in the white hellebore plant. It is also found in processed plant products; its presence in red wine (concentrations of 0.1–14.3 mg/L) has been proposed as a possible explanation for the “French paradox,” the observation of an unusually low rate of heart disease among Southern French people who drink a lot of red wine, despite a high saturated fat diet [3][4]. SIRT1, one of the mammalian versions of the sirtuin family of proteins, is activated by RVT [5], deacetylates histones and non-histone proteins, such as transcription factors [6]. Metabolism, stress resistance, cell survival, cellular senescence, inflammation-immune function, endothelial functions, and circadian rhythms are all affected by the SIRT1-regulated pathway [5]. Since RVT has been demonstrated to activate SIRT1, it is expected to help people with disorders such as improper metabolic regulation, inflammation, and cell cycle abnormalities. RVT’s usage as a nutraceutical and a therapeutic agent for a variety of disorders has been extensively investigated in preclinical trials as a natural molecule. Moreover, clinical trials are been conducted globally so as to establish its therapeutic efficacy for treatment of different diseases. A detailed description of it is mentioned in subsequent subtopics.
Because of the substantial dangers associated with standard cancer therapies, such as surgery and chemotherapy, its usage is of particular interest to cancer patients [7]. The intricacies of cancer cell signalling networks make it difficult for targeted inhibitors that target only one network to be effective. RVT, on the other hand, has been found to have chemo-preventive and chemotherapeutic effects on tumours in vitro and in vivo by targeting various pathways, making it a promising anticancer drug [8]. RVT has an effect on carcinogenesis at all three stages: initiation, promotion, and progression. Additionally, RVT has been demonstrated to directly trigger the apoptotic pathway via a variety of methods [9][10]. For example it has an effect on the nuclear factor κB (NF-B) signalling system, which governs inflammation, immunological response to infection, and cellular response to stimuli [11]. Furthermore, it has also been demonstrated that it blocks the IGF-1R/Akt/Wnt pathways and activates p53, influencing cell development and carcinogenesis [12]. Moreover, it can also block the PI3K/Akt pathway, which regulates cell differentiation, development, and proliferation, and other factors [13]. Several studies have been conducted to investigate the various methods by which RVT operates the PI3K/Akt pathway.
Considering its diverse potentials, an attempt has been made to advocate the development of RVT as a drug molecule. Although there are several dietary supplement products available in the global market, a thorough investigation in terms of clinical safety and efficacy may pave the way for a new therapeutic molecule.
Since resveratrol is a well-known antioxidant and has been utilised as a nutraceutical for many years, it possesses a range of therapeutic properties. As some of its clinical trials are completed, it could therefore be regarded as a promising drug candidate to be used in the treatment of certain diseases.

2. Occurrence/Sources

Dark grape extracts (Vitis vinifera) and giant knot weed (Polygonnum cuspidatum, a perennial shrub) are the richest natural sources of RVT (Table 1). It is also abundant in labrusca and muscadine grapes. Additionally, it is also found in plants such as eucalyptus, spruce, and lily, as well as in foods such as mulberries, peanuts, blueberries, strawberries, hops, and their derivatives [14][15]. It may also be found in the vines, roots, seeds, and stalks, but the skin has the highest concentration, with 50–100 g per gm [16]. RVT is a phytoalexin, which is a kind of antibiotic molecule generated by plants as part of their defense against diseases. For example, in reaction to an invading fungus, RVT is produced from p-coumaroyl CoA and malonyl CoA [1][17]. As fungal infections are more prevalent in cooler areas, grapes produced in cooler climates have a higher quantity of RVT [18]Table 2 shows the total RVT concentration of several wines and foods. Similarly, Figure 1 shows the occurrence of RVT in different sources.
Figure 1. shows the occurrence of RVT in different sources.
Table 2. List of Resveratrol sources with its concentration.

3. Commercial Products of Resveratrol

Data pertaining to marketed products have been collected from the National Institute of Health, dietary supplement label database and other websites. These items include either RVT or a combination of RVT. These items have a great variation of doses, such as 20 mg per serving to 1400 mg. It indicates a better safety profile of the molecule.

4. Clinical Trials on Resveratrol Based Products

RVT has also been studied clinically, such as assessment of the effect of RVT on cognitive and cerebral blood flow in the United Kingdom. In Canada, an analysis on the effect of antioxidants on cardio vascular risk was assessed. Furthermore, in Brazil the RVT was examined for its effectiveness in the management of pain due to endometriosis. Moreover, in Taiwan the effect of RVT on complications in patients with haemodialysis was investigated. Additionally, RVT with or without Piperine to enhance the plasma level of RVT was also assessed (USA). Meanwhile, in Singapore, a phase-1 trial is being conducted to analyse the effect of RVT in patients with Type-2 Diabetes (RED). The impact of RVT on brain function and structure was also studied. Moreover, in Italy, RVT’s anti-inflammatory and antioxidants effects on healthy adults were examined. In Tamil Nadu (India), RVT was evaluated as a potent supplement for patient with Type-2 Diabetes Mellitus. Likewise, a similar study was conducted in Maharashtra (India) to confirm whether the addition of RVT is beneficial and safe for patient with diabetes, dyslipidemia and hypertension (who are already on standard therapy). In Karnataka (India), the effect of nutritional supplementation of RVT on patients with advanced cancers and undergoing chemotherapy was evaluated. A similar trial was conducted in Maharashtra (India), to study the effects of nutritional supplementation of extremely active RVT (XAR) in healthy human individuals. In Maharashtra, effect of RVT and copper in reducing toxic side-effects of chemotherapy in patients with advanced mouth cancer was analysed. A similar trial was held in Maharashtra (India), to study the effect of RVT-copper in reducing oral mucositis in patients receiving concurrent chemo radiotherapy for locally advanced oropharyngeal cancer. Additionally, a similar trial was performed in Maharashtra (India) to assess the effect of the addition of RVT with chemotherapeutic agents in patients with gastric cancer. Likewise, the effect of RVT-copper on treating COVID-19 pneumonia was analysed in Maharashtra (India). Additionally, a study to assess the effect of oral RVT and copper combination on life span of glioblastoma patients undergoing surgery was conducted in Maharashtra (India). In Australia, RVT as an option for the treatment of Friedreich ataxia was assessed. A study of dietary RVT on glucose and lipid metabolism disorder is being conducted in China. In Australia, the effect of RVT on circulatory function of obese people with elevated blood pressure was examined. Another trial on similar lines was conducted in Australia where the sustained effect of RVT on circulatory functions in obese adults were assessed. Additionally, the role of RVT in the prevention of colorectal polyps was also investigated in Australia. Moreover, the effect of RVT’s supplementation on gut hormone secretion, gastric emptying and blood glucose responses to meals in patients with type-2 diabetes was assessed in Australia. Meanwhile, another study on RVT supplementation on cerebrovascular function, mood and cognitive performance in type-2 diabetes mellitus (T2DM) was completed in Australia. Another clinical trial was executed in Australia to establish whether RVT can enhance mood, physical function and cerebrovascular function and counteract cognitive decline in post-menopausal women. In Germany, the bioavailability of three different RVT products was evaluated in healthy individuals. Likewise, a similar study was also conducted in Germany, to examine the bioavailability and metabolism of RVT as a constituent of berries in humans. Furthermore, a biokinetic study on the impact of formulation on RVT bioavailability was also performed in Germany. More details about clinical trials are mentioned in Table 3.
Table 3. List of global clinical trials on Resveratrol. 

5. Recent Patent on Resveratrol

The medicinal advantages and other beneficial features of RVT have drawn the attention of numerous researchers to investigate and develop some intellectual property in the form of patents; some of them are included in Table 4.

References

  1. Pecyna, P.; Wargula, J.; Murias, M.; Kucinska, M. More than resveratrol: New insights into stilbene-based compounds. Biomolecules 2020, 10, 1111.
  2. Hasan, M.M.; Bae, H. An overview of stress-induced resveratrol synthesis in grapes: Perspectives for resveratrol-enriched grape products. Molecules 2017, 22, 294.
  3. Moretón-Lamas, E.; Lago-Crespo, M.; Lage-Yusty, M.A.; López-Hernández, J. Comparison of methods for analysis of resveratrol in dietary vegetable supplements. Food Chem. 2017, 224, 219–223.
  4. Balanov, P.E.; Smotraeva, I.V.; Abdullaeva, M.S.; Volkova, D.A.; Ivanchenko, O.B. Study on resveratrol content in grapes and wine products. In Proceedings of the International Conference on Efficient Production and Processing (ICEPP-2021), Kazan, Russia, 25–26 February 2021; Volume 247.
  5. Kuno, A.; Tanno, M.; Horio, Y. The effects of resveratrol and SIRT1 activation on dystrophic cardiomyopathy. Ann. N. Y. Acad. Sci. 2015, 1348, 46–54.
  6. Bagul, P.K.; Deepthi, N.; Sultana, R.; Banerjee, S.K. Resveratrol ameliorates cardiac oxidative stress in diabetes through deacetylation of NFkB-p65 and histone 3. J. Nutr. Biochem. 2015, 26, 1298–1307.
  7. Ko, J.H.; Sethi, G.; Um, J.Y.; Shanmugam, M.K.; Arfuso, F.; Kumar, A.P.; Bishayee, A.; Ahn, K.S. The role of resveratrol in cancer therapy. Int. J. Mol. Sci. 2017, 18, 2589.
  8. Ren, B.; Kwah, M.X.Y.; Liu, C.; Ma, Z.; Shanmugam, M.K.; Ding, L.; Xiang, X.; Ho, P.C.L.; Wang, L.; Ong, P.S.; et al. Resveratrol for cancer therapy: Challenges and future perspectives. Cancer Lett. 2021, 515, 63–72.
  9. Singh, C.K.; Chhabra, G.; Ahmad, N. Resveratrol and Cancer Cell Biology. In Resveratrol: State-of-the-Art Science and Health Applications; World Scientific: Singapore, 2018; pp. 183–207.
  10. Ashrafizadeh, M.; Taeb, S.; Haghi-Aminjan, H.; Afrashi, S.; Moloudi, K.; Musa, A.E.; Najafi, M.; Farhood, B. Resveratrol as an Enhancer of Apoptosis in Cancer: A Mechanistic Review. Anticancer Agents Med. Chem. 2020, 21, 2327–2336.
  11. Gal, R.; Deres, L.; Toth, K.; Halmosi, R.; Habon, T. The effect of resveratrol on the cardiovascular system from molecular mechanisms to clinical results. Int. J. Mol. Sci. 2021, 22, 10152.
  12. Zhang, L.X.; Li, C.X.; Kakar, M.U.; Khan, M.S.; Wu, P.F.; Amir, R.M.; Dai, D.F.; Naveed, M.; Li, Q.Y.; Saeed, M.; et al. Resveratrol (RV): A pharmacological review and call for further research. Biomed. Pharmacother. 2021, 143, 112164.
  13. Han, N.R.; Park, H.J.; Moon, P.D. Resveratrol Downregulates Granulocyte-Macrophage Colony-Stimulating Factor-Induced Oncostatin M Production through Blocking of PI3K/Akt/NF-κB Signal Cascade in Neutrophil-like Differentiated HL-60 Cells. Curr. Issues Mol. Biol. 2022, 44, 541–549.
  14. Galiniak, S.; Aebisher, D.; Bartusik-Aebisher, D. Health benefits of resveratrol administration. Acta Biochim. Pol. 2019, 66, 13–21.
  15. Chan, E.W.C.; Wong, C.W.; Tan, Y.H.; Foo, J.P.Y.; Wong, S.K.; Chan, H.T. Resveratrol and pterostilbene: A comparative overview of their chemistry, biosynthesis, plant sources and pharmacological properties. J. Appl. Pharm. Sci. 2019, 9, 124–129.
  16. Kuo, H.P.; Wang, R.; Lin, Y.S.; Lai, J.T.; Lo, Y.C.; Huang, S.T. Pilot scale repeated fed-batch fermentation processes of the wine yeast Dekkera bruxellensis for mass production of resveratrol from Polygonum cuspidatum. Bioresour. Technol. 2017, 243, 986–993.
  17. Wang, J.; Yang, Y.; Yan, Y. Bioproduction of resveratrol. In Biotechnology of Natural Products; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 61–79. ISBN 9783319679037.
  18. Cioch, M.; Semik-Szczurak, D.; Skoneczny, S. Botrytis and Wine Production. In Winemaking; CRC Press: Boca Raton, FL, USA, 2020; pp. 166–190.
  19. Burns, J.; Yokota, T.; Ashihara, H.; Lean, M.E.J.; Crozier, A. Plant foods and herbal sources of resveratrol. J. Agric. Food Chem. 2002, 50, 3337–3340.
  20. Sales, J.M.; Resurreccion, A.V.A. Resveratrol in Peanuts. Crit. Rev. Food Sci. Nutr. 2014, 54, 734–770.
  21. Tian, B.; Liu, J. Resveratrol: A review of plant sources, synthesis, stability, modification and food application. J. Sci. Food Agric. 2020, 100, 1392–1404.
  22. Yadav, M.; Jain, S.; Bhardwaj, A.; Nagpal, R.; Puniya, M.; Tomar, R.; Singh, V.; Parkash, O.; Prasad, G.B.K.S.; Marotta, F.; et al. Biological and medicinal properties of grapes and their bioactive constituents: An update. J. Med. Food 2009, 12, 473–484.
  23. Aggarwal, B.B.; Bhardwaj, A.; Aggarwal, R.S.; Seeram, N.P.; Shishodia, S.; Takada, Y. Role of resveratrol in prevention and therapy of cancer: Preclinical and clinical studies. Anticancer Res. 2004, 24, 2783–2840.
  24. Rauf, A.; Imran, M.; Butt, M.S.; Nadeem, M.; Peters, D.G.; Mubarak, M.S. Resveratrol as an anti-cancer agent: A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 1428–1447.
  25. Williams, L.D.; Burdock, G.A.; Edwards, J.A.; Beck, M.; Bausch, J. Safety studies conducted on high-purity trans-resveratrol in experimental animals. Food Chem. Toxicol. 2009, 47, 2170–2182.
  26. Limmongkon, A.; Nopprang, P.; Chaikeandee, P.; Somboon, T.; Wongshaya, P.; Pilaisangsuree, V. LC-MS/MS profiles and interrelationships between the anti-inflammatory activity, total phenolic content and antioxidant potential of Kalasin 2 cultivar peanut sprout crude extract. Food Chem. 2018, 239, 569–578.
  27. Gómez-Mejía, E.; Rosales-Conrado, N.; León-González, M.E.; Madrid, Y. Determination of phenolic compounds in residual brewing yeast using matrix solid-phase dispersion extraction assisted by titanium dioxide nanoparticles. J. Chromatogr. A 2019, 1601, 255–265.
  28. Xiong, Q.; Zhang, Q.; Zhang, D.; Shi, Y.; Jiang, C.; Shi, X. Preliminary separation and purification of resveratrol from extract of peanut (Arachis hypogaea) sprouts by macroporous adsorption resins. Food Chem. 2014, 145, 1–7.
  29. Wang, Y.; Catana, F.; Yang, Y.; Roderick, R.; Van Breemen, R.B. An LC-MS method for analyzing total resveratrol in grape juice, cranberry juice, and in wine. J. Agric. Food Chem. 2002, 50, 431–435.
  30. Lima, M.d.S.; Da Conceição Prudêncio Dutra, M.; Toaldo, I.M.; Corrêa, L.C.; Pereira, G.E.; De Oliveira, D.; Bordignon-Luiz, M.T.; Ninow, J.L. Phenolic compounds, organic acids and antioxidant activity of grape juices produced in industrial scale by different processes of maceration. Food Chem. 2015, 188, 384–392.
  31. Somkuwar, R.G.; Bhange, M.A.; Oulkar, D.P.; Sharma, A.K.; Ahammed Shabeer, T.P. Estimation of polyphenols by using HPLC–DAD in red and white wine grape varieties grown under tropical conditions of India. J. Food Sci. Technol. 2018, 55, 4994–5002.
  32. Chudzińska, M.; Rogowicz, D.; Wołowiec, Ł.; Banach, J.; Sielski, S.; Bujak, R.; Sinkiewicz, A.; Grześk, G. Resveratrol and cardiovascular system—the unfulfilled hopes. Ir. J. Med. Sci. 2021, 190, 981–986.
  33. Li, C.P.; Tan, S.; Ye, H.; Cao, J.; Zhao, H. A novel fluorescence assay for resveratrol determination in red wine based on competitive host-guest recognition. Food Chem. 2019, 283, 191–198.
  34. Ardid-ruiz, A.; Ibars, M.; Mena, P.; Del Rio, D.; Muguerza, B.; Arola, L.; Aragonès, G.; Suárez, M. Resveratrol treatment enhances the cellular response to leptin by increasing OBRB content in palmitate-induced steatotic hepg2 cells. Int. J. Mol. Sci. 2019, 20, 6282.
  35. Duessel, S.; Heuertz, R.M.; Ezekiel, U.R. Growth inhibition of human colon cancer cells by plant compounds. Clin. Lab. Sci. 2008, 21, 151–157.
More
Information
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register : , , , , , , , , , , ,
View Times: 604
Revisions: 2 times (View History)
Update Date: 29 Aug 2022
1000/1000
Video Production Service