Topic Review
Carboxylic Polyester-Degrading Enzymes
Esters are organic compounds widely represented in cellular structures and metabolism, originated by the condensation of organic acids and alcohols. Esterification reactions are also used by chemical industries for the production of synthetic plastic polymers. Polyester plastics are an increasing source of environmental pollution due to their intrinsic stability and limited recycling efforts. Bioremediation of polyesters based on the use of specific microbial enzymes is an interesting alternative to the current methods for the valorization of used plastics. Microbial esterases are promising catalysts for the biodegradation of polyesters that can be engineered to improve their biochemical properties.
  • 758
  • 18 May 2021
Topic Review
Polyphenols and Neuroprotection
Polyphenols are naturally occurring micronutrients that are present in many food sources. Besides being potent antioxidants, these molecules may also possess anti-inflammatory properties. Many studies have highlighted their potential role in the prevention and treatment of various pathological conditions connected to oxidative stress and inflammation (e.g., cancer, and cardiovascular and neurodegenerative disorders). Neurodegenerative diseases are globally one of the main causes of death and represent an enormous burden in terms of human suffering, social distress, and economic costs. Recent data expanded on the initial antioxidant-based mechanism of polyphenols’ action by showing that they are also able to modulate several cell-signaling pathways and mediators. The proposed benefits of polyphenols, either as protective/prophylactic substances or as therapeutic molecules, may be achieved by the consumption of a natural polyphenol-enriched diet, by their use as food supplements, or with formulations as pharmaceutical drugs/nutraceuticals.
  • 755
  • 15 Jun 2021
Topic Review
Flavonoids in Breast Cancer
Breast cancer (BC) remains the second most common cause of cancer-related deaths in women in the US, despite advances in detection and treatment. In addition, breast cancer survivors often struggle with long-term treatment related comorbidities. Identifying novel therapies that are effective while minimizing toxicity is critical in curtailing this disease. Flavonoids, a subclass of plant polyphenols, are emerging as promising treatment options for the prevention and treatment of breast cancer. Recent evidence suggests that in addition to anti-oxidant properties, flavonoids can directly interact with proteins, making them ideal small molecules for the modulation of enzymes, transcription factors and cell surface receptors. Of particular interest is the ability of flavonoids to modulate the tumor associated macrophage function. However, clinical applications of flavonoids in cancer trials are limited. Epidemiological and smaller clinical studies have been largely hypothesis generating. Future research should aim at addressing known challenges with a broader use of preclinical models and investigating enhanced dose-delivery systems that can overcome limited bioavailability of dietary flavonoids. 
  • 754
  • 03 Sep 2021
Topic Review
Dysregulation of Mitochondrial Metabolism in Fanconi Anemia-Deficient Cells
Fanconi anemia (FA) pathway deficiency is associated with dysregulated cellular metabolism in addition to defects in interstrand crosslinks (ICLs) repair, and metabolic abnormalities are an important potential contributor to the observed clinical phenotypes. Metabolic dysregulation is reflected by changes in mitochondrial structure and function with reduced energy production and an increase in oxidative stress and defective mitophagy. Furthermore, mutations in FA proteins cause increased aldehyde load and subsequent aldehyde induced damage, resulting in reduced cellular capacity for aldehyde detoxification, and hyperproduction of, and sensitivity to, inflammatory cytokines. Metabolic reprogramming in individuals with FA may be linked to an array of phenotypes poorly explained by deficient DNA repair, including short stature, insulin resistance, thyroid dysfunction, abnormal body mass index (BMI) and dyslipidemia. Metabolism is a dynamic process which is essential for cell viability, from maintaining membrane potentials, provision of metabolic energy in the form of ATP via oxidation of nutrients (catabolism) for cell maintenance and repair, to cell proliferation that requires ATP to drive the formation of complex macromolecules (anabolism), and tissue specific activities such as contraction of muscle and generation of action potentials in the brain. Nutrient uptake and utilization are commonly altered in cancers and many show a strong dependence on glutamine.
  • 754
  • 08 Jul 2022
Topic Review
Frataxin–Scaffold Interaction in Fe–S Cluster
Iron–sulfur clusters are essential to almost every life form and utilized for their unique structural and redox-targeted activities within cells during many cellular pathways. Proteins central to the eukaryotic ISC cluster assembly complex include the cysteine desulfurase, a cysteine desulfurase accessory protein, the acyl carrier protein, the scaffold protein and frataxin (in humans, NFS1, ISD11, ACP, ISCU and FXN, respectively). Recent molecular details of this complex (labeled NIAUF from the first letter from each ISC protein outlined earlier), which exists as a dimeric pentamer, have provided real structural insight into how these partner proteins arrange themselves around the cysteine desulfurase, the core dimer of the (NIAUF)2 complex.
  • 753
  • 15 Jun 2021
Topic Review
Exosomes in Liquid Biopsy
Exosomes are small vesicles of 100 nm in size that are released from every cell constantly. They contain different molecules (DNA, RNA, lipids, metabolites, etc.) that reflect the content of the cell they come from. Exosomes can be found in all biological fluids. In cancer, exosomes are involved in several events such as tumor growth, metastasis, and the immune response, by delivering their cargos to recipient cells. Due to their unique features, exosomes have become promising analytes in the field of liquid biopsy, which searches for biomarkers to manage different steps of the tumor process.
  • 752
  • 12 May 2021
Topic Review
Gram-Negative Bacterial Lysins
Antibiotics have had a profound impact on human society by enabling the eradication of otherwise deadly infections. Unfortunately, antibiotic use and overuse has led to the rapid spread of acquired antibiotic resistance, creating a major threat to public health. Novel therapeutic agents called bacteriophage endolysins (lysins) provide a solution to the worldwide epidemic of antibiotic resistance. Lysins are a class of enzymes produced by bacteriophages during the lytic cycle, which are capable of cleaving bonds in the bacterial cell wall, resulting in the death of the bacteria within seconds after contact. Through evolutionary selection of the phage progeny to be released and spread, these lysins target different critical components in the cell wall, making resistance to these molecules orders of magnitude less likely than conventional antibiotics. Such properties make lysins uniquely suitable for the treatment of multidrug resistant bacterial pathogens. Lysins, either naturally occurring or engineered, have the potential of being developed into fast-acting, narrow-spectrum, biofilm-disrupting antimicrobials that act synergistically with standard of care antibiotics.
  • 752
  • 23 Jun 2021
Topic Review
5-Bromo-2′-deoxyuridine
The thymidine analogue 5-bromo-2′-deoxyuridine (BrdU) is a pyrimidine 2′-deoxyribonucleoside compound having 5-bromouracil as the nucleobase. This agent is permanently incorporated into the DNA during the synthetic phase of the cell cycle. It has been argued that gene duplication, DNA repair or apoptotic cellular events might contribute to BrdU labeling in vivo.
  • 751
  • 12 Oct 2021
Topic Review
Genealogy
Although biological relationships are a universal reality for all human beings, the concepts of “family” and “family bond” depend on both the geographic region and the historical moment to which they refer. However, the concept of “family” can be determinant in a large variety of societies, since it can influence the lines of succession, inheritances and social relationships, as well as where and with whom an individual is buried. The relation between a deceased person and other members of a community, other individuals of the same necropolis, or even with those who are buried in the same tomb can be analysed from the genetic point of view, considering different perspectives: archaeological, historical, and forensic.
  • 751
  • 18 Nov 2021
Topic Review
Retrotransposition of Protein Coding Genes
Retrotransposition of protein coding genes is RNA-based gene duplication leading to the creation of single exon nonfunctional copies. Nevertheless, over time, many of these duplicates acquire transcriptional capabilities. In human in most cases, these so-called retrogenes do not code for proteins but function as regulatory long noncoding RNAs (lncRNAs). The mechanisms by which they can regulate other genes include microRNA sponging, modulation of alternative splicing, epigenetic regulation and competition for stabilizing factors, among others.
  • 750
  • 19 May 2021
Topic Review
CircRNAs in Human Cancer
In human cancer, circular RNAs (circRNAs) were implicated in the control of oncogenic activities such as tumor cell proliferation, epithelial-mesenchymal transition, invasion, metastasis and chemoresistance. The most widely described mechanism of action of circRNAs is their ability to act as competing endogenous RNAs (ceRNAs) for miRNAs, lncRNAs and mRNAs, thus impacting along their axis, despite the fact that a variety of additional mechanisms of action are emerging, representing an open and expanding field of study.
  • 750
  • 29 Mar 2022
Topic Review
4-Hexylresorcinol
4-Hexylresorcinol (4HR) is a synthetic resorcinolic lipid that has been used as an anti-parasitic and antiseptic agent since the 1920s. 
  • 750
  • 14 Sep 2021
Topic Review
Arsenic on Plants and Strategies for Mitigation
Arsenic contamination in soil and water is a major problem worldwide. Inorganic arsenic is widely present as arsenate and arsenite. Arsenic is transferred to crops through the soil and irrigation water. It is reported to reduce crop production in plants and can cause a wide array of diseases in humans, including different types of cancers, premature delivery, stillbirth, and spontaneous abortion. Arsenic methyltransferase (AS3MT) in the human body converts inorganic arsenic into monomethylarsonic acid and dimethylarsinic acid, which are later excreted from the body. Arsenic transfer from the soil to grains of rice involves different transporters such as Lsi1, Lsi2, and Lsi6. These transporters are also required for the transfer of silicate, which makes them important for the plant. 
  • 749
  • 27 Feb 2023
Topic Review
Schwann Cell Involvement in Digestive System Disorders
Proper functioning of the digestive system is ensured by coordinated action of the central and peripheral nervous systems (PNS). Peripheral innervation of the digestive system can be viewed as intrinsic and extrinsic. The intrinsic portion is mainly composed of the neurons and glia of the enteric nervous system (ENS). The extrinsic part is formed by sympathetic, parasympathetic, and sensory branches of the PNS with Schwann cells (SCs) being the chef glial cells. SCs are a crucial component of digestive tract innervation, and a great deal of research evidence highlights the important status of these glial cells in health and disease.
  • 748
  • 16 May 2022
Topic Review
Transcriptional Regulation of the Hippo Pathway
Hippo signaling pathway is a key modulator of tissue growth with widespread implications in organ development, cell growth, regeneration, and stem cell function.
  • 748
  • 15 Aug 2022
Topic Review
Drosophila Glue is a Promising Model for Bioadhesion
Before entering metamorphosis, the larvae of Drosophila flies expel a transparent glue from their mouth, which solidifies in contact with air within seconds and fixes the animal to a substrate (wood, leaves, fruits, stones, etc.) for several days until the adult emerges. This glue displays interesting adhesive properties, as it can adhere to various substrates with strengths similar to strongly adhesive commercial tapes. 
  • 748
  • 05 Sep 2022
Topic Review
Thermogenic Fat
The concerning worldwide increase of obesity and chronic metabolic diseases, such as T2D, dyslipidemia, and cardiovascular disease, motivates further investigations into preventive and alternative therapeutic approaches. Over the past decade, there has been growing evidence that the formation and activation of thermogenic adipocytes (brown and beige) may serve as therapy to treat obesity and its associated diseases owing to its capacity to increase energy expenditure and to modulate circulating lipids and glucose levels. Thus, understanding the molecular mechanism of brown and beige adipocytes formation and activation will facilitate the development of strategies to combat metabolic disorders. 
  • 745
  • 17 Jun 2021
Topic Review
Biomarker Studies in Stress Biology
Endpoints assessed at the population or community level are most often the result of the sum of effects on individuals, arising from the effects at the cellular and molecular levels. Within this framework, these lower biological level endpoints are more responsive at an early stage of exposure, making them potential toolboxes to be used as early-warning markers to address stress. Given this, by linking responses and understanding organisms’ metabolism and physiology, the possibilities for the use of biomarkers in stress biology are vast.
  • 745
  • 10 Jan 2022
Topic Review
Electrofermentation of Lactic Acid Bacteria
Microbial electrosynthesis is the process of supplying electrons to microorganisms to reduce CO2 and yield industrially relevant products. Such systems are limited by their requirement for high currents, resulting in challenges to cell survival. Electrofermentation is an electron-efficient form of microbial electrosynthesis in which a small cathodic or anodic current is provided to a culture to alter the oxidation–reduction potential of the medium and, in turn, alter microbial metabolism. This approach has been successfully utilised to increase yields of diverse products including biogas, butanediol and lactate. Biomass conversion to lactate is frequently facilitated by ensiling plant biomass with homofermentative lactic acid bacteria. Although most commonly used as a preservative in ensiled animal feed, lactate has diverse industrial applications as a precursor for the production of probiotics, biofuels, bioplastics and platform chemicals. Lactate yields by lactic acid bacteria (LAB) are constrained by a number of redox limitations which must be overcome while maintaining profitability and sustainability. 
  • 745
  • 02 Dec 2022
Topic Review
Brassinosteroids
Steroids are a pivotal class of hormones with a key role in growth modulation and signal transduction in multicellular organisms. Synthetic steroids are widely used to cure large array of viral, fungal, bacterial, and cancerous infections. Brassinosteroids (BRs) are a natural collection of phytosterols, which have structural similarity with animal steroids. BRs are dispersed universally throughout the plant kingdom. These plant steroids are well known to modulate a plethora of physiological responses in plants leading to improvement in quality as well as yield of food crops. Moreover, they have been found to play imperative role in stress-fortification against various stresses in plants. Over a decade, BRs have conquered worldwide interest due to their diverse biological activities in animal systems.
  • 744
  • 30 Jun 2021
  • Page
  • of
  • 47
ScholarVision Creations