Topic Review
Non-Intrusive Load Monitoring
Non-intrusive load monitoring (NILM) is a process of estimating operational states and power consumption of individual appliances, which if implemented in real-time, can provide actionable feedback in terms of energy usage and personalized recommendations to consumers. Intelligent disaggregation algorithms such as deep neural networks can fulfill this objective if they possess high estimation accuracy and lowest generalization error. In order to achieve these two goals, this paper presents a disaggregation algorithm based on a deep recurrent neural network using multi-feature input space and post-processing. First, the mutual information method was used to select electrical parameters that had the most influence on the power consumption of each target appliance. Second, selected steady-state parameters based multi-feature input space (MFS) was used to train the 4-layered bidirectional long short-term memory (LSTM) model for each target appliance. Finally, a post-processing technique was used at the disaggregation stage to eliminate irrelevant predicted sequences, enhancing the classification and estimation accuracy of the algorithm. A comprehensive evaluation was conducted on 1-Hz sampled UKDALE and ECO datasets in a noised scenario with seen and unseen test cases. Performance evaluation showed that the MFS-LSTM algorithm is computationally efficient, scalable, and possesses better estimation accuracy in a noised scenario, and generalized to unseen loads as compared to benchmark algorithms. Presented results proved that the proposed algorithm fulfills practical application requirements and can be deployed in real-time.
  • 1.5K
  • 28 Oct 2020
Topic Review
TCV and TGV Technology
Through ceramic via (TCV) technology expands the volume of high-precision and high-power thin-film circuits with 3D planar distribution, significantly improves the structural density and reduces the device size through via interconnection and circuit redistribution. Through glass via (TGV) technology has the advantages of high-density interconnection and low-loss transmission, which forms a highly reliable interconnection between the chip and the substrate, has higher I/O density and smaller spacing, and realizes passive on-chip devices, high-density copper interconnection and the heterogeneous integration of chips. Therefore, 3D integration and system-level packaging technology have developed rapidly.
  • 1.5K
  • 26 Jul 2023
Topic Review
Breakdown Voltages in Different Types of Gases
The idea of using a vacuum as an insulating medium is to take advantage of the fact that when the gas pressure is reduced to a value at which the average free paths of molecules and electrons are greater than the contact gap in the insulating system, the development of electron avalanches that initiate discharges in gases is impossible.
  • 1.5K
  • 07 Sep 2022
Topic Review
Electrochemical Devices
Electrochemical devices enable the measurement of a wide variety of ions, such as hydrogen ions, electrolytes, heavy metals, and nutrients.
  • 1.5K
  • 21 Jan 2022
Topic Review
Opto-Electronic Oscillators
An opto-electronic oscillator (OEO) is one of the most popular types of oscillators for generating micro- and millimeter wave signals.
  • 1.5K
  • 08 May 2021
Topic Review
Selected Solid-State Electrolytes
Electrolytes are key components in electrochemical storage systems, which provide an ion-transport mechanism between the cathode and anode of a cell. As battery technologies are in continuous development, there has been growing demand for more efficient, reliable and environmentally friendly materials. Solid-state lithium ion batteries (SSLIBs) are considered as next-generation energy storage systems and solid electrolytes (SEs) are the key components for these systems. Compared to liquid electrolytes, SEs are thermally stable (safer), less toxic and provide a more compact (lighter) battery design. However, the main issue is the ionic conductivity, especially at low temperatures. So far, there are two popular types of SEs: (1) inorganic solid electrolytes (InSEs) and (2) polymer electrolytes (PEs). Among InSEs, sulfide-based SEs are providing very high ionic conductivities (up to 10−2 S/cm) and they can easily compete with liquid electrolytes (LEs). On the other hand, they are much more expensive than LEs. PEs can be produced at less cost than InSEs but their conductivities are still not sufficient for higher performances. 
  • 1.5K
  • 16 Mar 2021
Topic Review
A Reactive Power Compensation Method
One of the main challenges of today’s electrical power engineering is the symmetrization of grid voltages and the minimization of reactive power flows in distribution networks. There are many negative effects associated with asymmetry in power systems, such as increased losses in electric motors, harmonics transferred to DC systems, or phase currents inequality. With the reactive power compensation method, the active power flow can be reduced even in the presence of angular asymmetry between voltage vectors of the utility grid. 
  • 1.5K
  • 09 Feb 2022
Topic Review
Different Power Electronic Topologies of Ultra-Fast Charger
The ultra-fast charging of batteries is a major issue in electric mobility development globally. Research in the area of power electronics for electric vehicle charging applications is focused on new high-power chargers. These chargers will significantly increase the charging power of electric vehicles, which will reduce the charging time. Furthermore, electric vehicles can be deployed to achieve improved efficiency and high-quality power if vehicle to microgrid (V2µG) is applied. 
  • 1.5K
  • 10 Feb 2023
Topic Review
Infrared Thermography for Condition-Based Monitoring in Electrical Energy
Condition-based monitoring (CBM) has emerged as a critical instrument for lowering the cost of unplanned operations while also improving the efficacy, execution, and dependability of tools. Thermal abnormalities can be thoroughly examined using thermography for condition monitoring.
  • 1.5K
  • 02 Sep 2022
Topic Review
Numerically Controlled Oscillator
A numerically controlled oscillator (NCO) is a digital signal generator which creates a synchronous (i.e. clocked), discrete-time, discrete-valued representation of a waveform, usually sinusoidal. NCOs are often used in conjunction with a digital-to-analog converter (DAC) at the output to create a direct digital synthesizer (DDS). Numerically controlled oscillators offer several advantages over other types of oscillators in terms of agility, accuracy, stability and reliability. NCOs are used in many communications systems including digital up/down converters used in 3G wireless and software radio systems, digital PLLs, radar systems, drivers for optical or acoustic transmissions, and multilevel FSK/PSK modulators/demodulators.
  • 1.4K
  • 11 Oct 2022
Topic Review
Electric Outboard Motor
Electric outboard motors are self contained propulsory units for boats, first invented in 1973 by Morton Ray of Ray Electric Outboards. These are not to be confused with trolling motors, which are not designed as a primary source of power. Most electric outboard motors have 0.5 to 4 kW direct current (DC) electric motors, operated at 12 to 60 volts DC. Recently developed outboard motors are powered with an alternating current (AC) or DC electric motor in the power head like a conventional petrol engine. With this setup, a motor can produce 10 kW output or more and is able to replace a petrol engine of 15 HP or more. The advantage of the induction or asynchronous motor is the power transfer to the rotor by means of electromagnetic induction. As these engines do not use permanent magnets, they require less maintenance and develop more torque at lower RPM.
  • 1.4K
  • 23 Nov 2022
Topic Review
Fourier Lightfield Microscope
Fourier lightfield microscopy (FLMic) is a technique aimed to capture and process 3D information of microscopic samples. Due to its optical design, FLMic has the inherent capacity of capturing a collection of orthographic perspectives of samples in a single shot. Consequently, FLMic is especially suited for capturing and processing 3D images of dynamic processes, being potentially addressed for real-time applications in both life and material sciences.
  • 1.4K
  • 10 Mar 2022
Topic Review
Operating Principles of Fiber Bragg Grating Sensors
Fiber Bragg gratings (FBG) sensors are increasingly commercially available and are, one of the most popular sensors from the fiber optic sensing family, having found use in a variety of industrial and research applications. A conventional FBG sensor is made up of a specially fabricated small and flexible segment imprinted into the core of a single-mode optical fiber.
  • 1.4K
  • 14 Dec 2022
Topic Review
Photovoltaic Solar Cells
A photovoltaic (PV) cell is the essential unit of a solar energy generation system in which sunlight is promptly converted to electrical energy. The solar cell is a p-n junction device. n-type refers to the negatively charged electrons donated by donor impurity atoms and p-type refers to the positively charged holes created by acceptor impurity atoms
  • 1.4K
  • 15 Jul 2022
Topic Review
Battery-Less RFID-Based Wireless Sensors
Wireless sensors are becoming increasingly popular in the home and industrial sectors and are used for a range of applications, from temperature or humidity monitoring to food-quality inspection of products being sold on the market. One of the main reasons for using wireless technology is that it affords non-contact, non-invasive sensing. This ability eliminates the need for long cables required for information transfer and reduces the spread of germs and brings comfort to the users.
  • 1.4K
  • 27 Jul 2021
Topic Review
Pentacene
Pentacene is a polycyclic aromatic hydrocarbon consisting of five linearly-fused benzene rings. This highly conjugated compound is an organic semiconductor. The compound generates excitons upon absorption of ultra-violet (UV) or visible light; this makes it very sensitive to oxidation. For this reason, this compound, which is a purple powder, slowly degrades upon exposure to air and light. Structurally, pentacene is one of the linear acenes, the previous one being tetracene (four fused benzene rings) and the next one being hexacene (six fused benzene rings). In August 2009, a group of researchers from IBM published experimental results of imaging a single molecule of pentacene using an atomic force microscope. In July 2011, they used a modification of scanning tunneling microscopy to experimentally determine the shapes of the highest occupied and lowest unoccupied molecular orbitals. In 2012, pentacene-doped p-terphenyl was shown to be effective as the amplifier medium for a room-temperature maser.
  • 1.4K
  • 12 Oct 2022
Topic Review
Maximum Power Point Tracking
Maximum Power Point Tracking (MPPT), or sometimes just Power Point Tracking (PPT), is a technique used with variable power supplies to maximize energy extraction as conditions change.
  • 1.4K
  • 19 Apr 2022
Topic Review
Halide Perovskites
Halide perovskites (HPs), with an excellent photoactive nature, dielectric, piezoelectric, ferroelectric, and pyroelectric properties, have been potential candidates for obtaining flexible nanogenerator-based self-powered sensors including light, pressure, and temperature. Additionally, the photo-stimulated dielectric, piezoelectric, and triboelectric properties of HPs make them efficient entrants for developing bimodal and multimode sensors to sense multi-physical signals individually or simultaneously. 
  • 1.4K
  • 30 Jul 2021
Topic Review
Sensor Data for Mobile Robots
Autonomous robots that assist humans in day to day living tasks are becoming increasingly popular. Autonomous mobile robots operate by sensing and perceiving their surrounding environment to make accurate driving decisions. A combination of several different sensors such as LiDAR, radar, ultrasound sensors and cameras are utilized to sense the surrounding environment of autonomous vehicles. These heterogeneous sensors simultaneously capture various physical attributes of the environment. Such multimodality and redundancy of sensing need to be positively utilized for reliable and consistent perception of the environment through sensor data fusion. However, these multimodal sensor data streams are different from each other in many ways, such as temporal and spatial resolution, data format, and geometric alignment. For the subsequent perception algorithms to utilize the diversity offered by multimodal sensing, the data streams need to be spatially, geometrically and temporally aligned with each other. A typical approach is to use a geometrical model to spatially align the two sensor outputs, followed by a Gaussian Process (GP) regression-based resolution matching algorithm to interpolate the missing data with quantifiable uncertainty. 
  • 1.4K
  • 09 Nov 2020
Topic Review
Flexible AC Transmission Systems Technologies
The advancements in power electronics have shown considerable improvement in satisfying the need for voltage stability and power quality improvement by introducing Flexible AC Transmission Systems (FACTS) technology. The main functions of these devices are reactive power compensation, voltage control, and power flow control to enhance better power quality in modern power systems.
  • 1.4K
  • 05 Jul 2022
  • Page
  • of
  • 50
ScholarVision Creations