Encyclopedia
Scholarly Community
Encyclopedia
Entry
Video
Image
Journal
Book
News
About
Log in/Sign up
Submit
Entry
Video
Image
and
or
not
All
${ type }
To
Search
Subject:
All Disciplines
Arts & Humanities
Biology & Life Sciences
Business & Economics
Chemistry & Materials Science
Computer Science & Mathematics
Engineering
Environmental & Earth Sciences
Medicine & Pharmacology
Physical Sciences
Public Health & Healthcare
Social Sciences
Sort:
Most Viewed
Latest
Alphabetical (A-Z)
Alphabetical (Z-A)
Filter:
All
Topic Review
Biography
Peer Reviewed Entry
Video Entry
Topic Review
Ton 618
Coordinates: 12h 28m 24.97s, +31° 28′ 37.7″ Ton 618 is a hyperluminous, broad-absorption-line, radio-loud quasar and Lyman-alpha blob located near the border of the constellations Canes Venatici and Coma Berenices, with the projected comoving distance of approximately 18.2 billion light-years from Earth. It possesses one of the most massive black holes ever found, with a mass of 66 billion M☉.
45.1K
24 Nov 2022
Topic Review
Polar Moment of Inertia
The polar moment (of inertia), also known as second (polar) moment of area, is a quantity used to describe resistance to torsional deformation (deflection), in cylindrical (or non-cylindrical) objects (or segments of an object) with an invariant cross-section and no significant warping or out-of-plane deformation. It is a constituent of the second moment of area, linked through the perpendicular axis theorem. Where the planar second moment of area describes an object's resistance to deflection (bending) when subjected to a force applied to a plane parallel to the central axis, the polar second moment of area describes an object's resistance to deflection when subjected to a moment applied in a plane perpendicular to the object's central axis (i.e. parallel to the cross-section). Similar to planar second moment of area calculations ([math]\displaystyle{ I_x }[/math],[math]\displaystyle{ I_y }[/math], and [math]\displaystyle{ I_{xy} }[/math]), the polar second moment of area is often denoted as [math]\displaystyle{ I_z }[/math]. While several engineering textbooks and academic publications also denote it as [math]\displaystyle{ J }[/math] or [math]\displaystyle{ J_z }[/math], this designation should be given careful attention so that it does not become confused with the torsion constant, [math]\displaystyle{ J_t }[/math], used for non-cylindrical objects. Simply put, the polar moment of inertia is a shaft or beam's resistance to being distorted by torsion, as a function of its shape. The rigidity comes from the object's cross-sectional area only, and does not depend on its material composition or shear modulus. The greater the magnitude of the polar moment of inertia, the greater the torsional resistance of the object.
41.3K
14 Nov 2022
Biography
A. S. Osborn
Albert Sherman Osborn, commonly known as A. S. Osborn (1858-1946), was a renowned forensic document examiner who is often referred to as the "Father of Document Examination". His contributions to forensic science and his ground-breaking work in the area of questioned document analysis have earned him recognition. Osborn, who started his career in document analysis in the late 19th century and es
19.1K
22 Mar 2023
Topic Review
Timoshenko-Ehrenfest Beam Theory
The Timoshenko-Ehrenfest beam theory was developed by Stephen Timoshenko and Paul Ehrenfest early in the 20th century. The model takes into account shear deformation and rotational bending effects, making it suitable for describing the behaviour of thick beams, sandwich composite beams, or beams subject to high-frequency excitation when the wavelength approaches the thickness of the beam. The resulting equation is of 4th order but, unlike Euler–Bernoulli beam theory, there is also a second-order partial derivative present. Physically, taking into account the added mechanisms of deformation effectively lowers the stiffness of the beam, while the result is a larger deflection under a static load and lower predicted eigenfrequencies for a given set of boundary conditions. The latter effect is more noticeable for higher frequencies as the wavelength becomes shorter (in principle comparable to the height of the beam or shorter), and thus the distance between opposing shear forces decreases. Rotary inertia effect was introduced by Bresse and Rayleigh. If the shear modulus of the beam material approaches infinity—and thus the beam becomes rigid in shear—and if rotational inertia effects are neglected, Timoshenko beam theory converges towards ordinary beam theory.
15.9K
20 Oct 2022
Topic Review
Impact of Nanotechnology
The impact of nanotechnology extends from its medical, ethical, mental, legal and environmental applications, to fields such as engineering, biology, chemistry, computing, materials science, and communications. Major benefits of nanotechnology include improved manufacturing methods, water purification systems, energy systems, physical enhancement, nanomedicine, better food production methods, nutrition and large-scale infrastructure auto-fabrication. Nanotechnology's reduced size may allow for automation of tasks which were previously inaccessible due to physical restrictions, which in turn may reduce labor, land, or maintenance requirements placed on humans. Potential risks include environmental, health, and safety issues; transitional effects such as displacement of traditional industries as the products of nanotechnology become dominant, which are of concern to privacy rights advocates. These may be particularly important if potential negative effects of nanoparticles are overlooked. Whether nanotechnology merits special government regulation is a controversial issue. Regulatory bodies such as the United States Environmental Protection Agency and the Health and Consumer Protection Directorate of the European Commission have started dealing with the potential risks of nanoparticles. The organic food sector has been the first to act with the regulated exclusion of engineered nanoparticles from certified organic produce, firstly in Australia and the UK, and more recently in Canada , as well as for all food certified to Demeter International standards
14.6K
18 Oct 2022
Topic Review
Hiranyakashipu
Hiranyakashipu (Sanskrit: हिरण्यकशिपु, "clothed in gold"; the name is said to depict one who is very much fond of wealth: hiranya "gold," kashipu "soft cushion") is an Asura from the Puranic scriptures of Hinduism. Hiranyakashipu's Younger Brother, Hiranyaksha was slain by Varaha, one of the Avatars of Vishnu. Angered by this, Hiranyakashipu decided to gain magical powers by performing a penance for Lord Brahma. He was subsequently killed by the Narasimha Avatara of Lord Vishnu. His tale depicts the futility of desiring power over others and the strength of God's protection over his fully surrendered devotees (in the case of his son Prahlada). Hiranyakashipu, according to legend, was the king of the daityas and had earned a boon from Brahma that made him virtually indestructible. He grew arrogant, thought he was God, and demanded that everyone worship only him. The story of Hiranyakashipu is in three parts. The first has to do with the curse of the Four Kumaras on the gatekeepers of Vaikuntha, Jaya and Vijaya, which causes them to be born as the daityas Hiranyakashipu and Hiranyaksha. The second part deals with Hiranyakashipu's penance to propitiate Brahma and gain a boon from him. The final part deals with his efforts to kill his son Prahlada (a devotee of Vishnu) and his subsequent death at the hands of Narasimha.
11.0K
15 Nov 2022
Topic Review
Drag Polar
The drag polar or drag curve is the relationship between the lift on an aircraft and its drag, expressed in terms of the dependence of the drag coefficient on the lift coefficient. It may be described by an equation or displayed in a diagram called a polar plot.
11.0K
24 Oct 2022
Topic Review
Closed Timelike Curves
Closed timelike curves (CTCs) are space-time trajectories that return to their starting point without violating the laws of special relativity. A traveler along a CTC could journey into the future but arrive in its past, creating a possible violation of the principle of causality. Such CTCs occur in Gödel’s rotating universe and many other general relativistic solutions of classical Einstein’s field equations. The chronological protection conjecture suggests that Nature forbids this kind of situation.
10.6K
27 Jan 2021
Topic Review
Monochromatic X-rays
Monochromatic X-ray has a single energy level in contrast to white X-rays used in conventional radiation therapy. Irradiation of high Z elements such as gadolinium, gold and silver with a monochromatic X-ray can result in photoelectric effects that includes the release of the Auger electrons that have strong cell killing effect. To apply this principle to cancer therapy, various nanoparticles loaded with high Z elements have been developed that enabled high Z elements to be delivered to tumor. The recent addition is gadolinium-loaded mesoporous silica nanoparticle (Gd-MSN). Tumor spheroids have been used as a convenient tumor model to demonstrate that monochromatic X-rays with energy level at or higher than the K-edge energy of gadolinium can destruct tumor mass that has Gd-MSN distributed throughout tumor spheroids.
9.7K
22 Jul 2020
Topic Review
Mooning
Mooning is the act of displaying one's bare buttocks by removing clothing, e.g., by lowering the backside of one's trousers and underpants, usually bending over, whether also exposing the genitals or not. Mooning is used in the English-speaking world to express protest, scorn, disrespect, or provocation, or can be done for shock value, fun, or as a form of exhibitionism. Some jurisdictions regard mooning to be indecent exposure, sometimes depending on the context.
8.0K
27 Oct 2022
Topic Review
Intergalactic Space
Outer space, or simply space, is the expanse that exists beyond the Earth and between celestial bodies. Outer space is not completely empty—it is a hard vacuum containing a low density of particles, predominantly a plasma of hydrogen and helium, as well as electromagnetic radiation, magnetic fields, neutrinos, dust, and cosmic rays. The baseline temperature of outer space, as set by the background radiation from the Big Bang, is 2.7 kelvins (−270.45 °C; −454.81 °F). The plasma between galaxies accounts for about half of the baryonic (ordinary) matter in the universe; it has a number density of less than one hydrogen atom per cubic metre and a temperature of millions of kelvins. Local concentrations of matter have condensed into stars and galaxies. Studies indicate that 90% of the mass in most galaxies is in an unknown form, called dark matter, which interacts with other matter through gravitational but not electromagnetic forces. Observations suggest that the majority of the mass-energy in the observable universe is dark energy, a type of vacuum energy that is poorly understood. Intergalactic space takes up most of the volume of the universe, but even galaxies and star systems consist almost entirely of empty space. Outer space does not begin at a definite altitude above the Earth's surface. However, the Kármán line, an altitude of 100 km (62 mi) above sea level, is conventionally used as the start of outer space in space treaties and for aerospace records keeping. The framework for international space law was established by the Outer Space Treaty, which entered into force on 10 October 1967. This treaty precludes any claims of national sovereignty and permits all states to freely explore outer space. Despite the drafting of UN resolutions for the peaceful uses of outer space, anti-satellite weapons have been tested in Earth orbit. Humans began the physical exploration of space during the 20th century with the advent of high-altitude balloon flights. This was followed by manned rocket flights and, then, manned Earth orbit, first achieved by Yuri Gagarin of the Soviet Union in 1961. Due to the high cost of getting into space, manned spaceflight has been limited to low Earth orbit and the Moon. On the other hand, unmanned spacecraft have reached all of the known planets in the Solar System. Outer space represents a challenging environment for human exploration because of the hazards of vacuum and radiation. Microgravity also has a negative effect on human physiology that causes both muscle atrophy and bone loss. In addition to these health and environmental issues, the economic cost of putting objects, including humans, into space is very high.
7.7K
23 Nov 2022
Topic Review
Gravity Well
A gravity well or gravitational well is a conceptual model of the gravitational field surrounding a body in space – the more massive the body, the deeper and more extensive the gravity well associated with it. The Sun is very massive, relative to other bodies in the Solar System, so the corresponding gravity well that surrounds it appears "deep" and far-reaching. The gravity wells of asteroids and small moons, conversely, are often depicted as very shallow. Anything at the center of mass of a planet or moon is considered to be at the bottom of that celestial body's gravity well, and so escaping the effects of gravity from such a planet or moon (to enter outer space) can be likened to "climbing out of the gravity well". The deeper a gravity well is, the more energy any space-bound "climber" must use to escape it. In astrophysics, a gravity well is specifically the gravitational potential field around a massive body. Other types of potential wells include electrical and magnetic potential wells. Physical models of gravity wells are sometimes used to illustrate orbital mechanics. Gravity wells are frequently confused with embedding diagrams used in general relativity theory, but the two concepts are distinctly separate and not directly related.
7.3K
12 Oct 2022
Biography
Eugen Goldstein
Eugen Goldstein (5 September 1850 – 25 December 1930) was a German physicist. He was an early investigator of discharge tubes, the discoverer of anode rays or canal rays, later identified as positive ions in the gas phase including the hydrogen ion or proton.[1] He was the great uncle of the violinists Mikhail Goldstein and Boris Goldstein. Goldstein was born in 1850 at Gleiwitz Upper Siles
6.1K
30 Dec 2022
Topic Review
Stress–Energy Tensor
The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor quantity in physics that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields. This density and flux of energy and momentum are the sources of the gravitational field in the Einstein field equations of general relativity, just as mass density is the source of such a field in Newtonian gravity.
6.0K
23 Nov 2022
Topic Review
Normal Strain
In physics, deformation is the continuum mechanics transformation of a body from a reference configuration to a current configuration. A configuration is a set containing the positions of all particles of the body. A deformation can occur because of external loads, intrinsic activity (e.g. muscle contraction), body forces (such as gravity or electromagnetic forces), or changes in temperature, moisture content, or chemical reactions, etc. Strain is related to deformation in terms of relative displacement of particles in the body that excludes rigid-body motions. Different equivalent choices may be made for the expression of a strain field depending on whether it is defined with respect to the initial or the final configuration of the body and on whether the metric tensor or its dual is considered. In a continuous body, a deformation field results from a stress field due to applied forces or because of some changes in the temperature field of the body. The relation between stress and strain is expressed by constitutive equations, e.g., Hooke's law for linear elastic materials. Deformations which cease to exist after the stress field is removed are termed as elastic deformation. In this case, the continuum completely recovers its original configuration. On the other hand, irreversible deformations remain. They exist even after stresses have been removed. One type of irreversible deformation is plastic deformation, which occurs in material bodies after stresses have attained a certain threshold value known as the elastic limit or yield stress, and are the result of slip, or dislocation mechanisms at the atomic level. Another type of irreversible deformation is viscous deformation, which is the irreversible part of viscoelastic deformation. In the case of elastic deformations, the response function linking strain to the deforming stress is the compliance tensor of the material.
5.4K
21 Oct 2022
Topic Review
Uniaxial Tensile Test
Tensile testing, also known as tension testing, is a fundamental materials science and engineering test in which a sample is subjected to a controlled tension until failure. Properties that are directly measured via a tensile test are ultimate tensile strength, breaking strength, maximum elongation and reduction in area. From these measurements the following properties can also be determined: Young's modulus, Poisson's ratio, yield strength, and strain-hardening characteristics. Uniaxial tensile testing is the most commonly used for obtaining the mechanical characteristics of isotropic materials. Some materials use biaxial tensile testing. The main difference between these testing machines being how load is applied on the materials.
5.4K
07 Nov 2022
Topic Review
Accretion (Astrophysics)
In astrophysics, accretion is the accumulation of particles into a massive object by gravitationally attracting more matter, typically gaseous matter, in an accretion disk. Most astronomical objects, such as galaxies, stars, and planets, are formed by accretion processes.
5.3K
11 Nov 2022
Topic Review
Lithium-Ion Battery Fire Suppression
Lithium-ion Batteries (LiBs) hazards, techniques for mitigating risks, the suppression of LiB fires and identification of shortcomings for future improvement were thoroughly reviewed. Water is identified as an efficient cooling and suppressing agent and water mist is considered the most promising technique to extinguish LiBs fire.
5.3K
29 Apr 2021
Topic Review
Artificial Gravity in Fiction
Artificial gravity is a common theme in fiction, particularly science fiction.
5.0K
21 Oct 2022
Topic Review
Andhaka
In Hindu mythology, Andhaka (Sanskrit: अन्धक, IAST: andhaka, lit. he who darkens) often refer to a malevolent asura who is killed by Shiva for trying to abduct Parvati. His story finds mention in various Hindu texts, including Matsya Purana, Kurma Purana, Linga Purana and Shiva Purana. He is believed to have thousand heads, two thousand eyes, arms and feet.
4.8K
17 Oct 2022
Page
of
18
Featured Entry Collections
>>
Featured Books
>>
Encyclopedia of Social Sciences
Chief Editor:
Kum Fai Yuen
Encyclopedia of COVID-19
Chief Editor:
Stephen Bustin
Encyclopedia of Fungi
Chief Editor:
Luis V. Lopez-Llorca
Encyclopedia of Digital Society, Industry 5.0 and Smart City
Chief Editor:
Sandro Serpa
Entry
Video
Image
Journal
Book
News
About
Log in/Sign up
New Entry
New Video
New Images
About
Terms and Conditions
Privacy Policy
Advisory Board
Contact
Partner
ScholarVision Creations
Feedback
Top
Feedback
×
Help Center
Browse our user manual, common Q&A, author guidelines, etc.
Rate your experience
Let us know your experience and what we could improve.
Report an error
Is something wrong? Please let us know!
Other feedback
Other feedback you would like to report.
×
Did you find what you were looking for?
Love
Like
Neutral
Dislike
Hate
0
/500
Email
Do you agree to share your valuable feedback publicly on
Encyclopedia
’s homepage?
Yes, I agree. Encyclopedia can post it.
No, I do not agree. I would not like to post my testimonial.
Webpage
Upload a screenshot
(Max file size 2MB)
Submit
Back
Close
×