Summary

Physics advocates research on unifying chemical bonds and recognized parallels on a different (and non-reductive) level, as per the concept of the Great Unification of Forces in Nature. From this perspective, a Physicochemical Grand Unification of Forces would be a worthy project for humankind in order to increase our undertanding of existence and to improve our lives. This entry collection aims to present an account of chemical bonds and interactions in nano- to maco-environments.

Expand All
Entries
Topic Review
Tellurium Nanotubes and Chemical Analogues
Tellurium (Te), the most metallic semiconductor, has been widely explored in recent decades owing to its fantastic properties such as a tunable bandgap, high carrier mobility, high thermal conductivity, and in-plane anisotropy. Many references have witnessed the rapid development of synthesizing diverse Te geometries with controllable shapes, sizes, and structures in different strategies. In all types of Te nanostructures, Te with one-dimensional (1D) hollow internal structures, especially nanotubes (NTs), have attracted extensive attention and been utilized in various fields of applications.
  • 383
  • 29 Jun 2022
Topic Review
Tracing the Glycine from Quantum Chemical Simulations
Glycine (Gly), NH2CH2COOH, is the simplest amino acid. Although it has not been directly detected in the interstellar gas-phase medium, it has been identified in comets and meteorites, and its synthesis in these environments has been simulated in terrestrial laboratory experiments. Likewise, condensation of Gly to form peptides in scenarios resembling those present in a primordial Earth has been demonstrated experimentally. Thus, Gly is a paradigmatic system for biomolecular building blocks to investigate how they can be synthesized in astrophysical environments, transported and delivered by fragments of asteroids (meteorites, once they land on Earth) and comets (interplanetary dust particles that land on Earth) to the primitive Earth, and there react to form biopolymers as a step towards the emergence of life. 
  • 440
  • 24 Jun 2022
Topic Review
Structure and Fabrication of MXene-Based Heterostructures
MXene, as an emerging family of 2D nanomaterials, exhibits excellent electrochemical, electronic, optical, and mechanical properties. MXene-based heterostructures have already been demonstrated in applications such as supercapacitors, sensors, batteries, and photocatalysts. Nowadays, increasing research attention is attracted onto MXene-based heterostructures, while there is less effort spent to summarize the current research status.
  • 907
  • 08 Jun 2022
Topic Review
Reactions of Graphene Nano-Flakes
The elucidation of the mechanism of the chemical evolution of the universe is one of the most important themes in astrophysics. Polycyclic aromatic hydrocarbons (PAHs) provide a two-dimensional reaction field in a three-dimensional interstellar space. Additionally, PAHs play an important role as a model of graphene nanoflake (GNF) in materials chemistry.
  • 486
  • 27 May 2022
Topic Review
Application of Quantum Mechanics/Molecular Mechanics Methodologies to Metalloproteins
The multiscaling quantum mechanics/molecular mechanics (QM/MM) approach was introduced in 1976, while the extensive acceptance of this methodology started in the 1990s. The combination of QM/MM approach with molecular dynamics (MD) simulation, otherwise known as the QM/MM/MD approach, is a powerful and promising tool for the investigation of chemical reactions’ mechanism of complex molecular systems, drug delivery, properties of molecular devices, organic electronics, etc. Applications of the QM/MM methodologies on metalloproteins are presented.  
  • 973
  • 05 May 2022
Topic Review
Flexible Stretchable Electrode
Flexible electrode technology is the key to the wide application of flexible electronics. However, flexible electrodes will break when large deformation occurs, failing flexible electronics. It restricts the further development of flexible electronic technology. Flexible stretchable electrodes are a hot research topic to solve the problem that flexible electrodes cannot withstand large deformation. Flexible stretchable electrode materials have excellent electrical conductivity, while retaining excellent mechanical properties in case of large deformation.
  • 1.2K
  • 27 Apr 2022
Topic Review
“Brick-and-Mortar” Composites Made of 2D Carbon Nanoparticles
Among all biomimetic materials, nacre has drawn great attention from the scientific community, thanks to superior levels of strength and toughness and its brick-and-mortar (B&M) architecture. However, achieving the desired performances is challenging since the mechanical response of the material is influenced by many factors, such as the filler content, the matrix molecular mobility and the compatibility between the two phases. Most importantly, the properties of a macroscopic bulk material strongly depend on the interaction at atomic levels and on their synergetic effect. In particular, the formation of highly-ordered brick-and-mortar structures depends on the interaction forces between the two phases. Consequently, poor mechanical performances of the material are associated with interface issues and low stress transfer from the matrix to the nanoparticles. Therefore, improvement of the interface at the chemical level enhances the mechanical response of the material. 
  • 719
  • 27 Apr 2022
Topic Review
Boron Chemicals
Boron-based bioactive compounds have provided amphiphilic properties to facilitate interaction with protein targets. Indeed, the spectrum of boron-based entities as drug candidates against many diseases has grown tremendously since the first clinically tested boron-based drug, Velcade. 
  • 824
  • 27 Apr 2022
Topic Review
Triarylmethyl Radical-Based High-Efficiency OLED
Perchlorotrityl radical (PTM), tris (2,4,6-trichlorophenyl) methyl radical (TTM), (3,5-dichloro-4-pyridyl) bis (2,4,6 trichlorophenyl) methyl radical (PyBTM), (N-carbazolyl) bis (2,4,6-trichlorophenyl) methyl radical (CzBTM), and their derivatives are stable organic radicals that exhibit light emissions at room temperature. Since these triarylmethyl radicals have an unpaired electron, their electron spins at the lowest excited state and ground state are both doublets, and the transition from the lowest excited state to the ground state does not pose the problem of a spin-forbidden reaction. When used as OLED layers, these triarylmethyl radicals exhibit unique light-emitting properties, which can increase the theoretical upper limit of the OLED’s internal quantum efficiency (IQE) to 100%.
  • 880
  • 15 Apr 2022
Topic Review
Recent Advances of Deep Eutectic Solvents
Deep Eutectic Solvents (DESs) have gained a lot of attention in the last few years because of their vast applicability in a large number of technological processes, the simplicity of their preparation and their high biocompatibility and harmlessness.
  • 1.1K
  • 07 Apr 2022
  • Page
  • of
  • 10
>>