Summary

Physics advocates research on unifying chemical bonds and recognized parallels on a different (and non-reductive) level, as per the concept of the Great Unification of Forces in Nature. From this perspective, a Physicochemical Grand Unification of Forces would be a worthy project for humankind in order to increase our undertanding of existence and to improve our lives. This entry collection aims to present an account of chemical bonds and interactions in nano- to maco-environments.

Expand All
Entries
Topic Review
Triarylmethyl Radical-Based High-Efficiency OLED
Perchlorotrityl radical (PTM), tris (2,4,6-trichlorophenyl) methyl radical (TTM), (3,5-dichloro-4-pyridyl) bis (2,4,6 trichlorophenyl) methyl radical (PyBTM), (N-carbazolyl) bis (2,4,6-trichlorophenyl) methyl radical (CzBTM), and their derivatives are stable organic radicals that exhibit light emissions at room temperature. Since these triarylmethyl radicals have an unpaired electron, their electron spins at the lowest excited state and ground state are both doublets, and the transition from the lowest excited state to the ground state does not pose the problem of a spin-forbidden reaction. When used as OLED layers, these triarylmethyl radicals exhibit unique light-emitting properties, which can increase the theoretical upper limit of the OLED’s internal quantum efficiency (IQE) to 100%.
  • 1.2K
  • 15 Apr 2022
Topic Review
Recent Advances of Deep Eutectic Solvents
Deep Eutectic Solvents (DESs) have gained a lot of attention in the last few years because of their vast applicability in a large number of technological processes, the simplicity of their preparation and their high biocompatibility and harmlessness.
  • 1.4K
  • 07 Apr 2022
Topic Review
Hybrid Sol-Gel Materials
Microorganism-cell-based biohybrid materials have attracted considerable attention over the last several decades. They are applied in a broad spectrum of areas, such as nanotechnologies, environmental biotechnology, biomedicine, synthetic chemistry, and bioelectronics. Sol-gel technology allows to obtain a wide range of high-purity materials from nanopowders to thin-film coatings with high efficiency and low cost, which makes it one of the preferred techniques for creating organic-inorganic matrices for biocomponent immobilization.
  • 1.2K
  • 06 Apr 2022
Topic Review
Defects and Heteroatoms and Supported Graphene Layers
The possibility of using graphene-based materials as “metal-free” catalysts is attracting enormous interest, since it reduces the need for precious or rare elements currently used in heterogeneous catalysis. However, free standing  and perfect graphene is known to be “perfectly inert”, while it is now well established that there is an essential role of defects and dopants in activating its chemical properties.
  • 1.1K
  • 02 Apr 2022
Topic Review
The Nitrogen Bond
The nitrogen bond in chemical systems occurs when there is evidence of a net attractive interaction between the electrophilic region associated with a covalently or coordinately bound nitrogen atom in a molecular entity and a nucleophile in another, or the same molecular entity. It is the first member of the family of pnictogen bonds formed by the first atom of the pnictogen family, Group 15, of the periodic table, and is an inter- or intra-molecular non-covalent interaction.
  • 2.6K
  • 25 Mar 2022
Topic Review
XPS Study Calcining Mixtures of Brucite with Titania
The X-ray stimulation photospectrometry technique known as XPS is applied to determine chemical bond characteristics of organic and inorganic substances. On the other hand, the processes of chemical substance formation can be energetically activated by various mechanisms, one of them being thermal activation. Magnesium oxide (magnesia, MgO) and titanium oxide (titania, TiO2) are substances that, due to their chemical and energetic nature, can chemically react to form other chemical compounds when subjected to relatively high temperatures. During the sintering of MgO it is feasible to use some additives such as TiO2 to improve some properties, but during the process it is possible the formation of substances that limit its final application at high temperature. This review focuses on the relatively high-temperature synthesis and characterization of compounds based on MgO:TiO2 in a 50:50 wt% ratio, using the XPS technique and supported by XRD.
  • 1.6K
  • 22 Mar 2022
Topic Review
Methanol to Gasoline (MTG)
The MTG (Methanol to Gasoline) process allows us to transform methanol into hydrocarbons within the range of gasoline boiling points.
  • 2.3K
  • 04 Mar 2022
Topic Review
Nitration of Proteins/Lipids/DNA by Peroxynitrite Derivatives
In recent years, much interest has been generated by the idea that nitrosative stress plays a role in the aetiology of human diseases, such as atherosclerosis, inflammation, cancer, and neurological diseases. The chemical changes mediated by reactive nitrogen species (RNS) are detrimental to cell function, because they can cause nitration, which can alter the structures of cellular proteins, DNA, and lipids, and hence, impair their normal function. One of the most potent biological nitrosative agents is peroxynitrite (ONOO−), which is produced when nitric oxide (•NO) and superoxide (•O2−) are combined at extremely rapid rates. Considering the plethora of oxidations by peroxynitrite, this makes peroxynitrite the most prevalent nitrating species responsible for protein, DNA, and lipids nitration in vivo. There is biochemical evidence to suggest that the interactions of the radicals NO and superoxide result in the formation of a redox system, which includes the reactions of nitrosation and nitration, and is a component of the complex cellular signalling network. However, the chemistry involved in the nitration process with peroxynitrite derivatives is poorly understood, particularly for biological molecules, such as DNA, proteins, and lipids.
  • 910
  • 27 Sep 2022
Topic Review
Liquid Chromatography Separation Mechanism
Separation is a critical process to isolate a particular compound, whether it is a natural product or a synthetic product. Studies of a compound’s characteristics and elucidation structure provides reliable results for pure compounds because there is no interference from other compounds. The primary source of difficulty in a separation process is the high similarity between two or more compounds, such as racemic and homologous mixtures. Liquid chromatography has proven to be an effective solution to those problems. The key to liquid chromatography separation is a sustainable retention and elution process. Stationary phases are essential for separating compounds in liquid chromatography. Various liquid chromatography columns of both preparative and quantitative types have been used and continue to develop. This research will discuss the separation mechanism in liquid chromatography.
  • 849
  • 02 Mar 2022
Topic Review
Catalytic Adsorptive Stripping Voltammetric Determination of Germanium
In organic free aqueous solutions, germanium is present in the form of Ge(OH)4 tetrahydroxide (pH < 7) or as H3GeO4−, which dominates in alkaline media (pH > 9). In the presence of many ligands containing carboxylic, di-orthophenolic, and polyalcoholic functional groups, Ge(IV) forms stable five-membered ring chelate complexes displaying coordination number 6.
  • 899
  • 17 Feb 2022
  • Page
  • of
  • 10
>>