Summary

Neurodegeneration refers to the progressive loss of neuron structure or function, which may eventually lead to cell death. Many neurodegenerative diseases, such as amyotrophic lateral sclerosis, multiple sclerosis, Parkinson's disease, Alzheimer's disease, Huntington's disease and prion disease, are the results of neurodegenerative processes. Neurodegeneration can be found in many different levels of neuronal circuits in the brain, from molecules to systems. Since there is no known method to reverse the progressive degeneration of neurons, these diseases are considered incurable. Biomedical research has revealed many similarities between these diseases at the subcellular level, including atypical protein assembly (such as protein diseases) and induction of cell death. These similarities indicate that progress in the treatment of one neurodegenerative disease may also improve other diseases. This collection of entries aims to collect various medical research results related to neurodegeneration. We invite researchers to share their new results and ideas related to neurodegeneration.

Expand All
Entries
Topic Review
Optical Coherence Tomography Angiography
Optical coherence tomography angiography (OCTA) is a non-invasive imaging modality used to visualize the retinal layers and vessels which shows encouraging results in the study of various neurological conditions, including dementia.
  • 440
  • 25 Mar 2022
Topic Review
Expression and Epigenetics of Genes for Parkinson’s Disease
Parkinson’s disease (PD) is a disorder characterized by a triad of motor symptoms (akinesia, rigidity, resting tremor) related to loss of dopaminergic neurons mainly in the Substantia nigra pars compacta. Diagnosis is often made after a substantial loss of neurons has already occurred, and while dopamine replacement therapies improve symptoms, they do not modify the course of the disease. Although some biological mechanisms involved in the disease have been identified, such as oxidative stress and accumulation of misfolded proteins, they do not explain entirely PD pathophysiology, and a need for a better understanding remains. Neurodegenerative diseases, including PD, appear to be the result of complex interactions between genetic and environmental factors. The latter can alter gene expression by causing epigenetic changes, such as DNA methylation, post-translational modification of histones and non-coding RNAs. Regulation of genes responsible for monogenic forms of PD may be involved in sporadic PD.
  • 433
  • 22 Mar 2022
Topic Review
Exosomes as Intercellular Messengers in Neurodegeneration
Exosomes of endosomal origin are one class of extracellular vesicles that are important in intercellular communication. Exosomes are released by all cells inbody and their cargo consisting of lipids, proteins and nucleic acids has a footprint reflective of their parental origin. The exosomal cargo has the power to modulate the physiology of recipient cells in the vicinity of the releasing cells or cells at a distance. Harnessing the potential of exosomes relies upon the purity of exosome preparation. Exosomes have an intercellular communicator role in the spread of misfolded proteins aiding the propagation of pathology. 
  • 537
  • 21 Mar 2022
Topic Review
Circadian Regulation of Retinal Pigment Epithelium Function
The retinal pigment epithelium (RPE) is a single layer of cells located between the choriocapillaris vessels and the light-sensitive photoreceptors in the outer retina. The RPE performs physiological processes necessary for the maintenance and support of photoreceptors and visual function. Among the many functions performed by the RPE, the timing of the peak in phagocytic activity by the RPE of the photoreceptor outer segments that occurs 1–2 h. after the onset of light has captured the interest of many investigators and has thus been intensively studied. Several studies have shown that this burst in phagocytic activity by the RPE is under circadian control and is present in nocturnal and diurnal species and rod and cone photoreceptors. Previous investigations have demonstrated that a functional circadian clock exists within multiple retinal cell types and RPE cells. However, the anatomical location of the circadian controlling this activity is not clear. Experimental evidence indicates that the circadian clock, melatonin, dopamine, and integrin signaling play a key role in controlling this rhythm.
  • 377
  • 21 Mar 2022
Topic Review
Brain Mechanisms of Myotonic Dystrophy Type 1
Myotonic dystrophy type 1 (DM1) is a severe neuromuscular disease mediated by a toxic gain of function of mutant RNAs. The neuropsychological manifestations affect multiple domains of cognition and behavior, but their etiology remains elusive. Transgenic DMSXL mice carry the DM1 mutation, show behavioral abnormalities, and express low levels of GLT1, a critical regulator of glutamate concentration in the synaptic cleft.
  • 468
  • 18 Mar 2022
Topic Review
Deep Learning for Smart Healthcare
Advances in technology have been able to affect all aspects of human life. For example, the use of technology in medicine has made significant contributions to human society. Every year, many people die due to brain tumors; based on “braintumor” website estimation in the U.S., about 700,000 people have primary brain tumors, and about 85,000 people are added to this estimation every year. To solve this problem, artificial intelligence has come to the aid of medicine and humans. Magnetic resonance imaging (MRI) is the most common method to diagnose brain tumors. Additionally, MRI is commonly used in medical imaging and image processing to diagnose dissimilarity in different parts of the body. 
  • 898
  • 16 Mar 2022
Topic Review
Delta-9-Tetrahydrocannabinol
Delta-9-tetrahydrocannabinol (THC) is the main phytocannabinoid found in plants of the Cannabis genus. Although THC has exactly the same chemical formula as cannabidiol (CBD) (i.e., C21H30O2), there is a slight difference in their atomic arrangement in that THC contains a cyclic ring, whereas CBD contains a hydroxyl group. THC is considered the main psychotropic constituent of cannabis, acting as a partial agonist at cannabinoid type 1 (CB1) and type 1 (CB2) receptors of the endocannabinoid system.
  • 561
  • 16 Mar 2022
Topic Review
Circadian System and Light Govern Rhythmic Brain Function
Life on earth has evolved under the influence of rhythmic changes in the environment, such as the 24 h light/dark cycle. Living organisms have developed internal circadian clocks, which allow them to anticipate these rhythmic changes and adapt their behavior and physiology accordingly. 
  • 863
  • 17 Mar 2022
Topic Review
Human iPSC-Derived Astrocytes in Neurological Disorders
Astrocytes, the most-abundant non-neuronal cell population in the central nervous system, play a vital role in these processes. They are involved in various functions in the brain, such as the regulation of synapse formation, neuroinflammation, and lactate and glutamate levels. The development of human-induced pluripotent stem cells (iPSCs) reformed the research in neurodegenerative disorders allowing for the generation of disease-relevant neuronal and non-neuronal cell types that can help in disease modeling, drug screening, and, possibly, cell transplantation strategies.
  • 374
  • 15 Mar 2022
Topic Review
Arsenic Induced Neurotoxicity
Arsenic is a ubiquitous environmental contaminant widely distributed in the surrounding environmental compartments. Exposure to inorganic arsenic is known to cause major neurological effects such as cytotoxicity, chromosomal aberration, damage to cellular DNA and genotoxicity. On the other hand, long-term exposure to arsenic may cause neurobehavioral effects in the juvenile stage, which may have detrimental effects in the later stages of life. Thus, it is important to understand the toxicology and underlying molecular mechanism of arsenic which will help to mitigate its detrimental effects.
  • 1.4K
  • 11 Mar 2022
  • Page
  • of
  • 49
>>