Topic Review
Wearable Technology in Sports
Wearable technology is increasingly vital for improving sports performance through real-time data analysis and tracking. Both professional and amateur athletes rely on wearable sensors to enhance training efficiency and competition outcomes.
  • 700
  • 20 Sep 2023
Topic Review
Wearable Technology for Monitoring Electrocardiograms in Adults
In the rapidly evolving landscape of continuous electrocardiogram (ECG) monitoring systems, there is a heightened demand for non-invasive sensors capable of measuring ECGs and detecting heart rate variability (HRV) in diverse populations, ranging from cardiovascular patients to sports enthusiasts. Challenges like device accuracy, patient privacy, signal noise, and long-term safety impede the use of wearable devices in clinical practice.
  • 292
  • 27 Feb 2024
Topic Review
Wearable Stretch Sensors
Wearable sensors are beneficial for continuous health monitoring, movement analysis, rehabilitation, evaluation of human performance. Wearable stretch sensors are increasingly being used for human movement monitoring. The content presented provides a review of wearable stretch sensors as well the design, development and validation of a wearable soft-robotic-stretch sensors. 
  • 2.9K
  • 25 Feb 2021
Topic Review
Wearable Sensors in Sports
Wearable sensor technology provides an alternative to classical laboratory-based assessments of human performance that enables real-time monitoring in natural environments, without the cumbersome set-up procedure and limitations related to space. We conducted a scoping review, aiming to present an overview of existing methods for assessments of shock impacts using wearable sensor technology within two domains: sports and occupational settings.
  • 648
  • 05 Aug 2021
Topic Review
Wearable Sensors in Para-Sports
Wearable sensors provide a promising opportunity to quantitatively assess the individual functional capacities of an athlete with disability in an ecological environment. The available evidence for the application of wearable sensors in sport for athletes with disabilities is mainly focused on performance assessment and characterization for training optimization, mirroring classic aspects of sports biomechanics in non-disabled athletes. Applications specific to sports for people with disability, such as athlete classification and injury prevention, are limited but indicate possible directions for further development. Finally, since the equipment is frequently of particular importance in sports for persons with disability, the literature indicates that wearable systems are promising to support the customization of equipment to meet the athlete's individual needs.
  • 980
  • 25 Apr 2021
Topic Review
Wearable Sensors for Wound Infection Biomarkers Detection
Infection represents a major complication that can affect wound healing in any type of wound, especially in chronic ones. There are currently certain limitations to the methods that are used for establishing a clinical diagnosis of wound infection. Thus, new, rapid and easy-to-use strategies for wound infection diagnosis need to be developed. To this aim, wearable sensors for infection diagnosis have been recently developed. These sensors are incorporated into the wound dressings that are used to treat and protect the wound, and are able to detect certain biomarkers that can be correlated with the presence of wound infection. Among these biomarkers, the most commonly used ones are pH and uric acid, but a plethora of others (lactic acid, oxygenation, inflammatory mediators, bacteria metabolites or bacteria) have also been detected using wearable sensors.
  • 548
  • 10 Jan 2022
Topic Review
Wearable Sensors and Machine Learning for Hypovolemia Problems
Hypovolemia is a physiological state of reduced blood volume that can exist as either (1) absolute hypovolemia because of a lower circulating blood (plasma) volume for a given vascular space (dehydration, hemorrhage) or (2) relative hypovolemia resulting from an expanded vascular space (vasodilation) for a given circulating blood volume (e.g., heat stress, hypoxia, sepsis). The external environment and the user's level of physical activity can exacerbate hypovolemic challenges to the body. Noninvasive, wearable sensing systems are being developed to track a user's ability to compensate for these challenges. 
  • 805
  • 13 Jan 2022
Topic Review
Wearable Sensors and Computer-Vision-Based Methods
Real-time sensing and modeling of the human body, especially the hands, is an important research endeavor for various applicative purposes such as in natural human computer interactions. Hand pose estimation is a big academic and technical challenge due to the complex structure and dexterous movement of human hands. Boosted by advancements from both hardware and artificial intelligence, various prototypes of data gloves and computer-vision-based methods have been proposed for accurate and rapid hand pose estimation in recent years. However, existing reviews either focused on data gloves or on vision methods or were even based on a particular type of camera, such as the depth camera. The purpose of this survey is to conduct a comprehensive and timely review of recent research advances in sensor-based hand pose estimation, including wearable and vision-based solutions. Hand kinematic models are firstly discussed. An in-depth review is conducted on data gloves and vision-based sensor systems with corresponding modeling methods. Particularly, this review also discusses deep-learning-based methods, which are very promising in hand pose estimation. Moreover, the advantages and drawbacks of the current hand gesture estimation methods, the applicative scope, and related challenges are also discussed.
  • 1.5K
  • 22 Feb 2021
Topic Review
Wearable Sensing Technology and Long COVID
Long COVID consequences have changed the perception towards disease management, and it is moving towards personal healthcare monitoring. Wearable sensors are being explored for its simplicity, portability, and real time health monitoring system. These smart devices can detect physiological changes in the human body providing a real time solution for quicker medical decision.
  • 726
  • 09 Jan 2023
Topic Review
Wearable Sensing Technologies
Standards for the fatigue testing of wearable sensing technologies are lacking. The majority of published fatigue tests for wearable sensors are performed on proof-of-concept stretch sensors fabricated from a variety of materials. Due to their flexibility and stretchability, polymers are often used in the fabrication of wearable sensors. Other materials, including textiles, carbon nanotubes, graphene, and conductive metals or inks, may be used in conjunction with polymers to fabricate wearable sensors.
  • 770
  • 10 Aug 2021
  • Page
  • of
  • 5495
ScholarVision Creations