Topic Review
Green Lean Six Sigma Approach
Green lean six sigma (GLSS) is an emerging approach towards environmental sustainability in conjunction with operational achievements. The success of this approach is premised on an understanding of the different components of a GLSS program; being the determinants for its outcomes. The aim of this paper is to investigate the various constructs of GLSS that play an essential role in achieving environmental sustainability. For this purpose, a systematic review of available literature has been conducted to evaluate the drivers, enablers (tools), and outcomes of a GLSS strategy as well as its critical success factors and barriers. Findings reveal that these constructs of GLSS as a holistic approach can facilitate an organization to better accomplish environmental objectives such as waste minimization, emission reduction, and resource conservation as compared to constructs of only one or any two of these strategies. Based on the analysis, an integrated GLSS framework is developed for environmental sustainability in addition to identifying vital research gaps and future directions.
  • 3.6K
  • 21 Oct 2020
Topic Review
Passivation
Passivation, in physical chemistry and engineering, refers to coating a material so it becomes "passive", that is, less readily affected or corroded by the environment. Passivation involves creation of an outer layer of shield material that is applied as a microcoating, created by chemical reaction with the base material, or allowed to build by spontaneous oxidation in the air. As a technique, passivation is the use of a light coat of a protective material, such as metal oxide, to create a shield against corrosion. Passivation of silicon is used during fabrication of microelectronic devices. In electrochemical treatment of water, passivation reduces the effectiveness of the treatment by increasing the circuit resistance, and active measures are typically used to overcome this effect, the most common being polarity reversal, which results in limited rejection of the fouling layer.[clarification needed] When exposed to air, many metals naturally form a hard, relatively inert surface layer, usually an oxide (termed the "native oxide layer") or a nitride, that serves as a passivation layer. In the case of silver, the dark tarnish is a passivation layer of silver sulfide formed from reaction with environmental hydrogen sulfide. (In contrast, metals such as iron oxidize readily to form a rough porous coating of rust that adheres loosely and sloughs off readily, allowing further oxidation.) The passivation layer of oxide markedly slows further oxidation and corrosion in room-temperature air for aluminium, beryllium, chromium, zinc, titanium, and silicon (a metalloid). The inert surface layer formed by reaction with air has a thickness of about 1.5 nm for silicon, 1–10 nm for beryllium, and 1 nm initially for titanium, growing to 25 nm after several years. Similarly, for aluminium, it grows to about 5 nm after several years. Surface passivation refers to a common semiconductor device fabrication process critical to modern electronics. It is the process by which a semiconductor surface such as silicon is rendered inert, and does not change semiconductor properties when it interacts with air or other materials. This is typically achieved by thermal oxidation, in which the material is heated and exposed to oxygen. In a silicon semiconductor, this process allows electricity to reliably penetrate to the conducting silicon below the surface, and to overcome the surface states that prevent electricity from reaching the semiconducting layer. Surface passivation by thermal oxidation is one of the key features of silicon technology, and is dominant in microelectronics. The surface passivation process was developed by Mohamed M. Atalla at Bell Labs in the late 1950s. It is commonly used to manufacture MOSFETs (metal-oxide-semiconductor field-effect transistors) and silicon integrated circuit chips (with the planar process), and is critical to the semiconductor industry. Surface passivation is also critical to solar cell and carbon quantum dot technologies.
  • 3.6K
  • 03 Nov 2022
Topic Review
Double-sided lapping
Double-sided lapping is an ultra-precision manufacturing process used for fabricating wafers, thin substrates, metal slice parts, etc. to achieve high surface integrity, flatness and parallelism. It can be divided into double-sided lapping with loose abrasives and fixed abrasives.
  • 3.6K
  • 29 Oct 2020
Topic Review
Physical Information
Physical information is a form of information. In physics, it refers to the information of a physical system. Physical information is an important concept used in a number of fields of study in physics. For example, in quantum mechanics, the form of physical information known as quantum information is used in many descriptions of quantum phenomena, such as quantum observation, quantum entanglement and the causal relationship between quantum objects that carry out either or both close and long-range interactions with one another. In a general sense, information is that which resolves uncertainty, which is due to the fact that it describes the details of that which is associated with the uncertainty. The description itself is, however, divorced from any type of language. When clarifying the subject of information, care should be taken to distinguish between the following specific cases: As the above usages are all conceptually distinct from each other, overloading the word "information" (by itself) to denote (or connote) several of these concepts simultaneously can lead to confusion. Accordingly, this article uses more detailed phrases, such as those shown in bold above, whenever the intended meaning is not made clear by the context.
  • 3.6K
  • 09 Oct 2022
Topic Review
Skid Resistance in Road Transport
Skid resistance is a significant feature that provides consistent traffic safety management for road pavements. An appropriate level of Skid resistance describes the contribution that the pavement surface makes to tire/road friction, and the surface of the road pavement can reduce vehicle operation cost, traffic accidents, and fatalities, particularly in wet conditions. Wet conditions decrease the level of the skid resistance (pavement friction), and this may lead to serious struggles related to driving on the road pavement (e.g., skidding or hydroplaning), which contributes to higher crash rates. The knowledge of skid resistance is essential to ensure reliable traffic management in transportation systems. Thus, a suitable methodology of skid resistance measurement and the understanding of the characterization of the road pavement are key to allow safe driving conditions.
  • 3.6K
  • 23 Sep 2021
Topic Review
Sheep Meat Processed Products
A concise review of the origin and type of the most important sheep and goat processed meat products produced in different countries and world regions is made. The manuscript also summarizes the most recent studies on sheep and goat processed meats on the physicochemical characterizations, sensory quality, microbiological quality and safety. Some conclusions and future trends in production, processing and commercial potentiality for sheep and goat processed meat products are discussed.
  • 3.6K
  • 06 Dec 2023
Topic Review
Homology
In biology, homology is similarity due to shared ancestry between a pair of structures or genes in different taxa. A common example of homologous structures is the forelimbs of vertebrates, where the wings of bats and birds, the arms of primates, the front flippers of whales and the forelegs of four-legged vertebrates like dogs and crocodiles are all derived from the same ancestral tetrapod structure. Evolutionary biology explains homologous structures adapted to different purposes as the result of descent with modification from a common ancestor. The term was first applied to biology in a non-evolutionary context by the anatomist Richard Owen in 1843. Homology was later explained by Charles Darwin's theory of evolution in 1859, but had been observed before this, from Aristotle onwards, and it was explicitly analysed by Pierre Belon in 1555. In developmental biology, organs that developed in the embryo in the same manner and from similar origins, such as from matching primordia in successive segments of the same animal, are serially homologous. Examples include the legs of a centipede, the maxillary palp and labial palp of an insect, and the spinous processes of successive vertebrae in a vertebral column. Male and female reproductive organs are homologous if they develop from the same embryonic tissue, as do the ovaries and testicles of mammals including humans. Sequence homology between protein or DNA sequences is similarly defined in terms of shared ancestry. Two segments of DNA can have shared ancestry because of either a speciation event (orthologs) or a duplication event (paralogs). Homology among proteins or DNA is inferred from their sequence similarity. Significant similarity is strong evidence that two sequences are related by divergent evolution from a common ancestor. Alignments of multiple sequences are used to discover the homologous regions. Homology remains controversial in animal behaviour, but there is suggestive evidence that, for example, dominance hierarchies are homologous across the primates.
  • 3.6K
  • 10 Oct 2022
Topic Review
Materials Science, Glasses
Glasses are solid amorphous materials which transform into liquids upon heating through the glass transition. The International Commission on Glass defines glass as a state of matter, usually produced when a viscous molten material is cooled rapidly to below its glass transition temperature, with insufficient time for a regular crystal lattice to form. The solid-like behaviour of glasses is separated from the liquid-like behaviour at higher temperatures by the glass transition temperature, Tg. The IUPAC Compendium on Chemical Terminology defines glass transition as a second order transition in which a supercooled melt yields, on cooling, a glassy structure. It states that below the glass-transition temperature the physical properties of glasses vary in a manner similar to those of the crystalline phase. Moreover, it is deemed that the bonding structure of glasses has the same symmetry signature in terms of Hausdorff-Besikovitch dimensionality of chemical bonds as for the crystalline materials. 
  • 3.6K
  • 09 May 2024
Topic Review
African Golden Wolf
The African golden wolf (Canis lupaster) or African wolf is a canine native to North Africa, West Africa, the Sahel, northern East Africa, and the Horn of Africa. It is the descendant of a genetically admixed canid of 72% gray wolf (Canis lupus) and 28% Ethiopian wolf (Canis simensis) ancestry. It is listed as least concern on the IUCN Red List. In the Atlas Mountains, it was sighted in elevations as high as 1,800 m (5,900 ft). It is primarily a predator, targeting invertebrates and mammals as large as gazelle fawns, though larger animals are sometimes taken. Its diet also includes animal carcasses, human refuse, and fruit. The African golden wolf is a monogamous and territorial species; offspring remain with the family to assist in raising their parents' younger pups. It was previously classified as an African variant of the golden jackal (Canis aureus), with at that time at least one subspecies (C. a. lupaster) having been classified as a wolf. In 2015, a series of analyses on the species' mitochondrial DNA and nuclear genome demonstrated that it was, in fact, distinct from the golden jackal, and more closely related to the gray wolf and the coyote (Canis latrans). It is nonetheless still close enough to the golden jackal to produce hybrid offspring, as indicated through genetic tests on jackals in Israel, and a 19th-century captive crossbreeding experiment. It plays a prominent role in some African cultures; in North African folklore, it is viewed as an untrustworthy animal whose body parts can be used for medicinal or ritualistic purposes, while it is held in high esteem in Senegal's Serer religion as being the first creature to be created by the god Roog.
  • 3.6K
  • 23 Nov 2022
Topic Review
Graphical Projection
Graphical projection is a protocol, used in technical drawing, by which an image of a three-dimensional object is projected onto a planar surface without the aid of numerical calculation.
  • 3.6K
  • 07 Nov 2022
  • Page
  • of
  • 5358
ScholarVision Creations