Topic Review
Acetic Acid in Ethanol-Induced in Regulating Cardiovascular Function
Acetic acid is a bioactive short-chain fatty acid produced in large quantities from ethanol metabolism. How acetic acid/acetate generates oxidative stress, alters the function of pre-sympathetic neurons, and can potentially influence cardiovascular function in both humans and rodents after ethanol consumption are described. 
  • 86
  • 19 Feb 2024
Topic Review
Circadian Rhythms and Sleep, Metabolic and Cardiovascular Disorders
Circadian rhythms are generated by the circadian clock, a self-sustained internal timing system that exhibits 24-h rhythms in the body. Many metabolic, cellular, behavioral and physiological processes are regulated by the circadian clock in coordination with environmental cues. 
  • 69
  • 08 Feb 2024
Topic Review
Theory of Addiction
Drug addiction is characterized by a loss of control over drug-seeking and -consumption, despite the profound negative consequences this has on the individual’s life [1]. While the acute effects of a substance depend on its psychoactive properties, the progression of addiction converges into a series of problems that are common and severely impact all spheres of the individual’s life, compromising interpersonal, economic, and health status. Thus, in chronic drug users it is common to present several physical problems including brain damage and atrophy, circulatory system issues, premature aging, among others. From a socio-economic perspective, common problems include homelessness, criminal behavior, unemployment, social isolation, and dependence.
  • 70
  • 01 Feb 2024
Topic Review
Endothelial Cells in Schizophrenia
Schizophrenia (SCZ) is an articulated psychiatric syndrome whose faded etiologic framework is characterized by a combination of genetic, epigenetic, and environmental factors. It is notoriously explained by an intertwining of a positive and negative symptomatology, from Crow’s SCZ classification in type I (with a syndromic picture marked by a positive clinical condition) and type II (with a negative evolution of the clinical conditions), and subsequent debate, until the last Diagnostic Statistic Manual classification.
  • 113
  • 01 Feb 2024
Topic Review
BKCa Channel Function in Cellular Membranes
Alterations in the activity of BKCa channels, responsible for the generation of the overall magnitude of Ca2+-activated K+ current at the whole-cell level, occur through allosteric mechanisms. The collaborative interplay between membrane depolarization and heightened intracellular Ca2+ ion concentrations collectively contribute to the activation of BKCa channels.
  • 109
  • 30 Jan 2024
Topic Review
Nanoparticles for Brain Protection
Strokes rank as the second most common cause of mortality and disability in the human population across the world. Currently, available methods of treating or preventing strokes have significant limitations, primarily the need to use high doses of drugs due to the presence of the blood–brain barrier. In the last decade, increasing attention has been paid to the capabilities of nanotechnology. However, the vast majority of research in this area is focused on the mechanisms of anticancer and antiviral effects of nanoparticles.
  • 111
  • 29 Jan 2024
Topic Review
Sexual Dimorphisms in Endothelial Cell Functions in PAD
Peripheral artery disease (PAD) is caused by blocked arteries due to atherosclerosis and/or thrombosis which reduce blood flow to the lower limbs. It results in major morbidity, including ischemic limb, claudication, and amputation, with patients also suffering a heightened risk of heart attack, stroke, and death.
  • 134
  • 24 Jan 2024
Topic Review
Pathophysiology of Ventricular Tachycardia
The use of catheter-based irreversible electroporation in clinical cardiac laboratories, termed pulsed-field ablation (PFA), is gaining international momentum among cardiac electrophysiology proceduralists for the non-thermal management of both atrial and ventricular tachyrhythmogenic substrates. One area of potential application for PFA is in the mitigation of ventricular tachycardia (VT) risk in the setting of ischemia-mediated myocardial fibrosis, as evidenced by recently published clinical case reports. The efficacy of tissue electroporation has been documented in other branches of science and medicine.
  • 94
  • 18 Jan 2024
Topic Review
Concepts in the Two-Process Model of Sleep Regulation
The two-process model of sleep regulation has served as a conceptual framework in the last four decades for understanding sleep physiology. In the 1970s, long-term recordings of sleep in rats were obtained thanks to EEG telemetry. NonREM sleep and REM sleep were found to differ in their time course and response to light-dark protocols. There were indications for their coupling to the circadian system, in particular the light-dark and the dark-light transitions. With the advent of quantitative EEG analysis, slow-wave activity in nonREM sleep was recognized as a sleep-wake-dependent variable. The term “sleep homeostasis” was coined to specify the regulated balance between sleep and waking. The regulatory homeostatic process was designated as “Process S”. In the two-process model, its interaction with the circadian pacemaker “Process C” can account for sleep duration under various experimental protocols. Local, use-dependent slow-wave activity changes were demonstrated in both humans and rats by the selective, unilateral activation of a cortical region prior to sleep. Finding that rest in invertebrates has sleep-like regulatory properties opened a new realm of animal studies. Comparative sleep studies in a broad variety of animal species confirmed the validity of the basic concepts of the two-process model.
  • 84
  • 17 Jan 2024
Topic Review
Ion Channels in GBM Cell Migration and Death
Ca2+-activated K+ channels of large- and intermediate-conductance (BK and IK, respectively) and the volume-regulated anion channel (VRAC), are the main K+ and Cl- channels highly-expressed in glioblastoma (GBM) cells, where they play an essential role in the control of cell volume and, in turn, migration, invasion, and apoptotic cell death, the three main features underlying GBM malignancy and lethality.
  • 183
  • 14 Dec 2023
  • Page
  • of
  • 32