Topic Review
Blockchain Applications in Agriculture
Blockchain is a distributed, immutable ledger technology initially developed to secure cryptocurrency transactions. Following its revolutionary use in cryptocurrencies, blockchain solutions are now being proposed to address various problems in different domains, and it is currently one of the most “disruptive” technologies.
  • 893
  • 26 Aug 2022
Topic Review
Integration of AI and the IoT in Education
The emulation of human intelligence processes by computer systems is known as artificial intelligence (AI). The development of intelligent machines that function and respond much like people is the focus of this area of computer science. Machine learning, computer vision, and natural language processing are all examples of AI technology. These tools may be used to build systems with intelligence that can reason, analyze, and gain knowledge from data. On the other hand, the Internet of Things (IoT) is a network of real physical items, such as gadgets and appliances, that are integrated with sensors, software, and connections to allow for data collection and exchange. The integration of AI and the IoT in education has the potential to revolutionize the way we learn. Personalized learning, real-time feedback and support, and immersive learning experiences are some of the benefits that AI and the IoT can bring to the education system.
  • 892
  • 22 Nov 2023
Topic Review
Data Mining in Agriculture
Data mining in agriculture is a recent research topic, consisting of the application of data mining techniques to agriculture. Recent technologies are able to provide extensive information on agricultural-related activities, which can then be analyzed in order to find relevant information. A related, but not equivalent term is precision agriculture.
  • 891
  • 18 Nov 2022
Topic Review
IoT Intrusion Detection Using Feature Selection Method
The Internet of Things (IoT) ecosystem has experienced significant growth in data traffic and consequently high dimensionality. Intrusion Detection Systems (IDSs) are essential self-protective tools against various cyber-attacks. However, IoT IDS systems face significant challenges due to functional and physical diversity. These IoT characteristics make exploiting all features and attributes for IDS self-protection difficult and unrealistic. 
  • 889
  • 17 Jun 2022
Topic Review
Impact of Artificial Intelligence on Dental Education
Most dental educators have limited knowledge and skills to assess AI applications, as they were not trained to do so. Also, AI technology has evolved exponentially. Factual reliability and opportunities with OpenAI Inc.’s ChatGPT are considered critical inflection points in the era of generative AI. Updating curricula at dental institutions is inevitable as advanced deep-learning approaches take over the clinical areas of dentistry and reshape diagnostics, treatment planning, management, and telemedicine screening. With advances in AI language models, communication with patients will change, and the foundations of dental education, including essay, thesis, or scientific paper writing, will need to adapt. However, there is a growing concern about its ethical and legal implications, and further consensus is needed for the safe and responsible implementation of AI in dental education.
  • 891
  • 20 Feb 2023
Topic Review
Hybrid Number
A hybrid number is a generalization of complex numbers [math]\displaystyle{ \left(a+\mathbf{i}b, \mathbf{i}^{2}=-1\right) }[/math], split-complex numbers (or "hyperbolic number") [math]\displaystyle{ \left(a+\mathbf{h}b, \mathbf{h}^2=1\right) }[/math] and dual numbers [math]\displaystyle{ \left(a+\mathbf{\varepsilon} b, \mathbf{\varepsilon}^2 = 0\right) }[/math]. Hybrid numbers form a noncommutative ring. Complex, hyperbolic and dual numbers are well known two-dimensional number systems. It is well known that, the set of complex numbers, hyperbolic numbers and dual numbers are respectively. The algebra of hybrid numbers is a noncommutative algebra which unifies all three number systems calls them hybrid numbers., , . A hybrid number is a number created with any combination of the complex, hyperbolic and dual numbers satisfying the relation Because these numbers are a composition of dual, complex and hyperbolic numbers, Ozdemir calls them hybrid numbers . A commutative two-dimensional unital algebra generated by a 2 by 2 matrix is isomorphic to either complex, dual or hyperbolic numbers . Due to the set of hybrid numbers is a two-dimensional commutative algebra spanned by 1 and [math]\displaystyle{ \mathbf{i}b+c\mathbf{\varepsilon }+d\mathbf{h} }[/math], it is isomorphic to one of the complex, dual or hyperbolic numbers. Especially in the last century, a lot of researchers deal with the geometric and physical applications of these numbers. Just as the geometry of the Euclidean plane can be described with complex numbers, the geometry of the Minkowski plane and Galilean plane can be described with hyperbolic numbers. The group of Euclidean rotations SO(2) is isomorphic to the group U(1) of unit complex numbers. The geometrical meaning of multiplying by [math]\displaystyle{ e^{\mathbf{i}\theta}=\cos \theta +\mathbf{i}\sin \theta }[/math] means a rotation of the plane. , . The group of Lorentzian rotations [math]\displaystyle{ SO(1,1) }[/math] is isomorphic to the group of unit spacelike hyperbolic numbers. This rotation can be viewed as hyperbolic rotation. Thus, multiplying by [math]\displaystyle{ e^{\mathbf{h}\theta }=\cosh \theta +\mathbf{h} \sinh \theta }[/math] means a map of hyperbolic numbers into itself which preserves the Lorentzian metric. , , , The Galilean rotations can be interpreted with dual numbers. The concept of a rotation in the dual number plane is equivalent to a vertical shear mapping since [math]\displaystyle{ \left( 1+x\mathbf{\varepsilon }\right) \left( 1+y\mathbf{\varepsilon }\right) =1+\left( x+y\right) \mathbf{\varepsilon } }[/math]. The Euler formula for dual numbers is [math]\displaystyle{ e^{\mathbf{\varepsilon }\theta }=1+\mathbf{\varepsilon }\theta }[/math]. Multiplying by [math]\displaystyle{ e^{\mathbf{\varepsilon \theta }} }[/math] is a map of dual numbers into itself which preserves the Galilean metric. This rotation can be named as parabolic rotation , , , , , . File:Planar rotations.tif In abstract algebra, the complex, the hyperbolic and the dual numbers can be described as the quotient of the polynomial ring [math]\displaystyle{ \mathbb{R}[x] }[/math] by the ideal generated by the polynomials [math]\displaystyle{ x^2+1, }[/math], [math]\displaystyle{ x^2-1 }[/math] and [math]\displaystyle{ x^{2} }[/math] respectively. That is, Matrix represantations of the units [math]\displaystyle{ \mathbf{i} }[/math], [math]\displaystyle{ \mathbf{\varepsilon } }[/math], [math]\displaystyle{ \mathbf{h} }[/math] are respectively.
  • 890
  • 08 Nov 2022
Topic Review
Embedded Machine Learning
Embedded machine learning (EML) can be applied in the areas of accurate computer vision schemes, reliable speech recognition, innovative healthcare, robotics, and more. However, there exists a critical drawback in the efficient implementation of ML algorithms targeting embedded applications. Machine learning algorithms are generally computationally and memory intensive, making them unsuitable for resource-constrained environments such as embedded and mobile devices. In order to efficiently implement these compute and memory-intensive algorithms within the embedded and mobile computing space, innovative optimization techniques are required at the algorithm and hardware levels. 
  • 890
  • 01 Nov 2021
Topic Review
Convolutional Neural Network
Convolutional neural network (CNN)-based deep learning (DL) has a wide variety of applications in the geospatial and remote sensing (RS) sciences, and consequently has been a focus of many recent studies. 
  • 890
  • 29 Jan 2022
Topic Review
Deepfake Attacks and Electrical Network Frequency Fingerprints Approach
With the fast development of Fifth-/Sixth-Generation (5G/6G) communications and the Internet of Video Things (IoVT), a broad range of mega-scale data applications emerge (e.g., all-weather all-time video). These network-based applications highly depend on reliable, secure, and real-time audio and/or video streams (AVSs), which consequently become a target for attackers. While modern Artificial Intelligence (AI) technology is integrated with many multimedia applications to help enhance its applications, the development of General Adversarial Networks (GANs) also leads to deepfake attacks that enable manipulation of audio or video streams to mimic any targeted person. Deepfake attacks are highly disturbing and can mislead the public, raising further challenges in policy, technology, social, and legal aspects. As a primary cause of misinformation, an imminent need for fast and reliable authentication techniques is of a high priority.
  • 891
  • 23 May 2022
Topic Review
Wireless Sensors for Brain Activity
Over the last decade, the area of electroencephalography (EEG) witnessed a progressive move from high-end large measurement devices, relying on accurate construction and providing high sensitivity, to miniature hardware, more specifically wireless wearable EEG devices. While accurate, traditional EEG systems need a complex structure and long periods of application time, unwittingly causing discomfort and distress on the users. Given their size and price, aside from their lower sensitivity and narrower spectrum band(s), wearable EEG devices may be used regularly by individuals for continuous collection of user data from non-medical environments. This allows their usage for diverse, nontraditional, non-medical applications, including cognition, BCI, education, and gaming. Given the reduced need for standardization or accuracy, the area remains a rather incipient one, mostly driven by the emergence of new devices that represent the critical link of the innovation chain.
  • 890
  • 26 Jan 2021
  • Page
  • of
  • 371
Video Production Service