You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Hybrid Number
Edit

A hybrid number is a generalization of complex numbers (a+ib,i2=1), split-complex numbers (or "hyperbolic number") (a+hb,h2=1) and dual numbers (a+εb,ε2=0). Hybrid numbers form a noncommutative ring. Complex, hyperbolic and dual numbers are well known two-dimensional number systems. It is well known that, the set of complex numbers, hyperbolic numbers and dual numbers are respectively. The algebra of hybrid numbers is a noncommutative algebra which unifies all three number systems calls them hybrid numbers., , . A hybrid number is a number created with any combination of the complex, hyperbolic and dual numbers satisfying the relation Because these numbers are a composition of dual, complex and hyperbolic numbers, Ozdemir calls them hybrid numbers . A commutative two-dimensional unital algebra generated by a 2 by 2 matrix is isomorphic to either complex, dual or hyperbolic numbers . Due to the set of hybrid numbers is a two-dimensional commutative algebra spanned by 1 and ib+cε+dh, it is isomorphic to one of the complex, dual or hyperbolic numbers. Especially in the last century, a lot of researchers deal with the geometric and physical applications of these numbers. Just as the geometry of the Euclidean plane can be described with complex numbers, the geometry of the Minkowski plane and Galilean plane can be described with hyperbolic numbers. The group of Euclidean rotations SO(2) is isomorphic to the group U(1) of unit complex numbers. The geometrical meaning of multiplying by eiθ=cosθ+isinθ means a rotation of the plane. , . The group of Lorentzian rotations SO(1,1) is isomorphic to the group of unit spacelike hyperbolic numbers. This rotation can be viewed as hyperbolic rotation. Thus, multiplying by ehθ=coshθ+hsinhθ means a map of hyperbolic numbers into itself which preserves the Lorentzian metric. , , , The Galilean rotations can be interpreted with dual numbers. The concept of a rotation in the dual number plane is equivalent to a vertical shear mapping since (1+xε)(1+yε)=1+(x+y)ε. The Euler formula for dual numbers is eεθ=1+εθ. Multiplying by eεθ is a map of dual numbers into itself which preserves the Galilean metric. This rotation can be named as parabolic rotation , , , , , . File:Planar rotations.tif In abstract algebra, the complex, the hyperbolic and the dual numbers can be described as the quotient of the polynomial ring R[x] by the ideal generated by the polynomials x2+1,, x21 and x2 respectively. That is, Matrix represantations of the units i, ε, h are respectively.

physical applications dual number dual numbers

1. Definition

The set of hybrid numbers K, defined as

K={a+ib+cε+dh:a,b,c,dR, i2=1,ε2=0,h2=1,ih=hi=ε+i}.

For the hybrid number Z=a+bi+cε+dh, the number a is called the scalar part and is denoted by S(Z); bi+cε+dh is called the vector part and is denoted by V(Z) [1]

The conjugate of a hybrid number Z=a+bi+cε+dh, denoted by Z, is defined as Z=S(Z)V(Z)=abicεdh as in quaternions. Multiplication operation in the hybrid numbers is associative and not commutative.

Hybrid Multiplication
× 1 i Undefined control sequence \boldsymbol h
1 1 i Undefined control sequence \boldsymbol h
i i 1 1h Undefined control sequence \boldsymbol
Undefined control sequence \boldsymbol Undefined control sequence \boldsymbol 1+h 0 Undefined control sequence \boldsymbol
h h Undefined control sequence \boldsymbol Undefined control sequence \boldsymbol 1

2. Character and Type of a Hybrid Number

Let Z=a+bi+cε+dh be a hybrid number. The real number

C(Z)=ZZ=ZZ=a2+(bc)2c2d2

is called the characteristic number of $\mathbf{Z.}</math> We say that a hybrid number;

{Z is spacelike if C(Z)<0;Z is timelikeif C(Z)>0;Z is lightlikeif C(Z)=0.

These are called ""'the characters of the hybrid numbers"'".

Let Z=a+bi+cε+dh be a hybrid number. The real number

(Z)=(bc)2+c2+d2

is called the type number of Z. We say that a hybrid number;

{Z is elliptic if (Z)<0;Z is hyperbolicif (Z)>0;Z is parabolicif (Z)=0.

These are called the \textbf{types of the hybrid numbers}. The vector EZ=(bc,c,d) is called hybridian vector of Z.

3. Norms of Hybrid Numbers

Let Z=a+bi+cε+dh be a hybrid number. The real number

Z=|C(Z)|=|a2+(bc)2c2d2|

is called the norm of Z. Besides, the real number

N(Z)=||=|(bc)2+c2+d2|

will be called the norm of the hybrid vector of Z. This norm definition is a generalized norm definition that overlaps with the definitions of norms in complex, hyperbolic and dual numbers.

  • If Z is a complex number (c=d=0), then Z=|ZZ|=a2+b2
  • If Z is a hyperbolic number (b=c=0), then Z=|ZZ|=|a2d2|,
  • If Z is a dual number (b=d=0), then Z=a2=|a|.

4. Inverse of a Hybrid Number

Using the hybridian product of hybrid numbers, one can show that the equality C(Z1Z2)=C(Z1)C(Z2) holds So, timelike hybrid numbers form a group according to the multiplication operation. The inverse of a hybrid number Z=a+bi+cε+dh,Z0 is defined as

Undefined control sequence \dfrac

Accordingly, lightlike hybrid numbers have no inverse.

5. Argument of a Hybrid Number

Let Z=a+bi+cε+dh be a hybrid number. The argument argZ=θ of Z is defined as follows with respect to its type.

Undefined control sequence \dfrac

6. Polar Form of a Hybrid Number

Let Z=a+bi+cε+dh be a hybrid number, and θ=argZ.

i. If Z is elliptic, then Z=ρ(cosθ+Usinθ) such that U2=1;

ii. If Z a lightlike hyperbolic, then Z=a(1+U) such that U2=1;

iii. If Z is spacelike or timelike hyperbolic, then, Z=kρ(coshθ+Usinhθ) such that U2=1, where ρ=Z, Undefined control sequence \tfrac and

k={1Z is timelike and a>0,1Z is timelike and a<0,UZ is spacelike and a>0,UZ is spacelike and a<0,

for k{1,1,U,U}

iv. If Z is a parabolic hybrid number, then Z=Z(ε+U) where Undefined control sequence \tfrac U2=0, Undefined control sequence \sgn.

7. De Moivre's Formulas for Hybrid Numbers

De Moivre's formula for hybrid numbers as follows..[1]. Let Z=a+Ub, U2{±1,0} be a spacelike or timelike hybrid number. If θ=argZ and ρ=Z.

i. If Z is elliptic, then Zn=ρn(cosnθ+Usinnθ), U2=1;

ii. If Z is hyperbolic, then Zn=knρn(coshnθ+Usinhnθ), U2=1;

iii. If Z is parabolic, then Zn=ρn(εn+nεn1U), U2=0.

If Z=a(1+U) is a lightlike hybrid number, then Zn=an2n1(1+U) where Undefined control sequence \tfrac and U2=1.

8. Roots of a Hybrid Number

Let W be a hybrid number and nZ+. The hybrid numbers Z satisfying the equation Zn=W can be found as follows [1], [2]

i. If W=ρ(cosθ+Usinθ) is an elliptic hybrid number, then the roots of W are in the form

Undefined control sequence \dfrac

for m=0,1,2,,n1;

ii. If W=ρk(coshθ+Usinhθ) is a spacelike or timelike hyperbolic hybrid number, then the roots of W are in the form

Undefined control sequence \dfrac

where k{1,1,U,U};

iii. If W=ρ(ε+U), Undefined control sequence \sgn is a parabolic hybrid number, the only root is

Undefined control sequence \dfrac

where ρ=Z.

If W=a(1+U) is a lightlike hybrid number, then

Undefined control sequence \dfrac

for nZ+ where Undefined control sequence \tfrac and U2=1.

9. The Matrix Representation of Hybrid Numbers

Just as complex numbers and quaternions can be represented as matrices, so can hybrid numbers. There are at least two ways of representing hybrid numbers as real matrices in such a way that hybrid addition and multiplication correspond to matrix addition and matrix multiplication. The hybrid number ring K is isomorphic to 2×2 matrix rings M2×2. So, each hybrid number can be represented by a 2 by 2 real matrix. Thus, it can be done operations and calculations in the hybrid numbers using the corresponding matrices.[1][2][3] The map φ:KM2×2 is a ring isomorphism where

φ(a+bi+cε+dh)=[a+cbc+dcb+dac]

for Z=a+bi+cε+dhK. Also, the real matrix

A=[abcd],

corresponds to the hybrid number

Undefined control sequence \dfrac

According to this ring isomorphism, matrix represantations of the units 1, i, ε, h are as follows :
1[1001], i[0110], ε[1111], h[0110]

Let A be a 2 by 2 real matrix corresponding to the hybrid number Z, then there are the following equalities.

  • Z=|detA|,
  • Undefined control sequence \tfrac
  • Undefined control sequence \operatorname is discriminant of the characteristic polynomial of A
  • Z1 exists if and only if det(A)0.
Classification of matrices
A detA>0 detA=0 detA<0
Undefined control sequence \operatorname Timelike elliptic
Undefined control sequence \operatorname Timelike parabolic Lightlike parabolic
Undefined control sequence \operatorname Timelike hyperbolic Lightlike hyperbolic Spacelike hyperbolic

10. The Logarithm of a Hybrid Number

Logarithm function for elliptic and hyperbolic hybrid numbers can be defined as

lnZ=ln|Z|+Vθ.

And, the logarithm of parabolic hybrid numbers is not defined. The identity log(Z1Z2)=logZ1+logZ2 which is well known for the real numbers, is not correct for the hybrid numbers, since Z1Z2Z2Z1.

11. Euler's Formulas for the Hybrid Numbers

Using the serial expansions of exponential, hyperbolic and trigonometric functions, we can express the Euler formulas of unit hybrid numbers as follows.

Type of hybrid number Euler formula
Z is timelike hyperbolic Z=eVθ=cosθ+Vsinθ
Z is spacelike hyperbolic Z=VeVθ=sinhθ+Vcoshθ
Z is parabolic Z=eVθ=ε+Vθ, Undefined control sequence \sgn

References

  1. Ozdemir, M. (2018). "Introduction to Hybrid Numbers". Applied Clifford Algebras 28:11, 2018.. doi:10.1007/s00006-018-0833-3.  https://dx.doi.org/10.1007%2Fs00006-018-0833-3
  2. Özdemir M., Finding n-th Roots of a 2×2 Real Matrix Using De Moivre's Formula, Adv. in Applied Clifford Algebras, 29:2, (2019)
  3. G. Dattoli, S. Licciardi, R. M. Pidatella, E. Sabia, Hybrid Complex Numbers: The Matrix Version, Adv. in Applied Clifford Algebras, 28:58, (2018)
More
Information
Subjects: Mathematics
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register :
View Times: 1.5K
Entry Collection: HandWiki
Revision: 1 time (View History)
Update Date: 08 Nov 2022
Video Production Service