Topic Review
Electric Vehicles for Vehicle-to-Grid Services
With every passing second, we witness the effect of the global environmental impact of fossil fuels and carbon emissions, to which nations across the globe respond by coming up with ambitious goals to become carbon-free and energy-efficient. At the same time, electric vehicles (EVs) are developed as a possible solution to reach this ambitious goal of making a cleaner environment and facilitating smarter transportation modes. This excellent idea of shifting towards an entirely EV-based mobility industry and economy results in a range of issues that need to be addressed. The issues range from ramping up the electricity generation for the projected increase in consumption to developing an infrastructure that is large enough to support the higher demand for electricity that arises due to the market penetration of EVs. Vehicle to grid (V2G) is a concept that is largely in a testing phase in the current scenario. However, it appears to offer a solution to the issues created by a mobility sector that the constantly growing EV fleet will dominate. Furthermore, the integration of EVs with the grid seems to offer various cost-wise and environment-wise benefits while assisting the grid by tapping into the idle energy of parked EVs during peak hours
  • 900
  • 17 Apr 2024
Topic Review
Hydrogen Production in Arctic Region
The development of markets for low-carbon energy sources requires reconsideration of issues related to extraction and use of oil and gas. Significant reserves of hydrocarbons are concentrated in Arctic territories, e.g., 30% of the world’s undiscovered natural gas reserves and 13% of oil. Associated petroleum gas, natural gas and gas condensate could be able to expand the scope of their applications. Natural gas is the main raw material for the production of hydrogen and ammonia, which are considered promising primary energy resources of the future, the oxidation of which does not release CO2. Complex components contained in associated petroleum gas and gas condensate are valuable chemical raw materials to be used in a wide range of applications.
  • 1.5K
  • 17 Apr 2024
Topic Review
Basics of High-Entropy Materials
High-entropy materials (HEMs) constitute a revolutionary class of materials that have garnered significant attention in the field of materials science, exhibiting extraordinary properties in the realm of energy storage. These equimolar multielemental compounds have demonstrated increased charge capacities, enhanced ionic conductivities, and a prolonged cycle life, attributed to their structural stability. In the anode, transitioning from the traditional graphite (372 mAh g−1) to an HEM anode can increase capacity and enhance cycling stability. For cathodes, lithium iron phosphate (LFP) and nickel manganese cobalt (NMC) can be replaced with new cathodes made from HEMs, leading to greater energy storage. HEMs play a significant role in electrolytes, where they can be utilized as solid electrolytes, such as in ceramics and polymers, or as new high-entropy liquid electrolytes, resulting in longer cycling life, higher ionic conductivities, and stability over wide temperature ranges. The incorporation of HEMs in metal–air batteries offers methods to mitigate the formation of unwanted byproducts, such as Zn(OH)4 and Li2CO3, when used with atmospheric air, resulting in improved cycling life and electrochemical stability.
  • 56
  • 15 Apr 2024
Topic Review
Gas Turbines to the Hydrogen Energy Move
Land-based gas turbines (GTs) are continuous-flow engines that run with permanent flames once started and at stationary pressure, temperature, and flows at stabilized load. Combustors operate without any moving parts and their substantial air excess enables complete combustion. These features provide significant space for designing efficient and versatile combustion systems. In particular, as heavy-duty gas turbines have moderate compression ratios and ample stall margins, they can burn not only high- and medium-BTU fuels but also low-BTU ones. Hydrogen is an energy carrier and not a primary energy as there are very scarce natural sources thereof; the rare reservoirs of hydrogen originate from chemical reactions inside the earth crust and are sometimes referred to as “natural H2”or “white H2”.
  • 719
  • 14 Mar 2024
Topic Review
Technological Innovations in In Situ Leaching
Uranium, a cornerstone for nuclear energy, facilitates a clean and efficient energy conversion. In the era of global clean energy initiatives, uranium resources have emerged as a vital component for achieving sustainability and clean power. To fulfill the escalating demand for clean energy, continual advancements in uranium mining technologies are imperative. Currently, established uranium mining methods encompass open-pit mining, underground mining, and in situ leaching (ISL). Notably, in situ leaching stands out due to its environmental friendliness, efficient extraction, and cost-effectiveness. Moreover, it unlocks the potential of extracting uranium from previously challenging low-grade sandstone-hosted deposits, presenting novel opportunities for uranium mining.
  • 82
  • 12 Mar 2024
Topic Review
Failures of the Photovoltaic Module Components
With the global increase in the deployment of photovoltaic (PV) modules, the need to explore and understand their reported failure mechanisms has become crucial. Despite PV modules being considered reliable devices, failures and extreme degradations often occur. Some degradations and failures within the normal range may be minor and not cause significant harm. Others may initially be mild but can rapidly deteriorate, leading to catastrophic accidents, particularly in harsh environments.
  • 63
  • 12 Mar 2024
Topic Review
SOFC-GT Integrated Technology
The solid oxide fuel cell (SOFC) transforms the chemical energy of fuel and oxidizer directly into electrical energy; it can be coupled with gas turbines (GT) and steam turbine to create an effective and clean hybrid power system because of its advantages in high power generation efficiency, high waste heat level, and low pollution. The idea of combining SOFC and GT is actually very simple. The gas stream at the outlet of the anode of SOFC has high energy, which can be utilized to form a hybrid system in combination with GT. The combination mechanism of SOFC and GT can realize the efficient conversion and utilization of energy and improve the overall performance of the system as well as the environmental protection performance.
  • 59
  • 12 Mar 2024
Topic Review
Industrial Demand-Side Management Applications
The transition to sustainable energy sources presents significant challenges for energy distribution and consumption systems. Specifically, the intermittent availability of renewable energy sources and the decreasing usage of fossil fuels pose challenges to energy flexibility and efficiency. An approach to tackle these challenges is demand-side management, aiming to adapt energy consumption and demand. A key requirement for demand-side management is the traceability of the energy flow among individual energy consumers. 
  • 65
  • 11 Mar 2024
Topic Review
Energy Storage Systems for Automotive Applications
In the automotive industry, many devices are used to store energy in different forms. The most commonly used ones are batteries and supercapacitors, which store energy in electrical form, as well as flywheels, which store energy in mechanical form. Other less commonly used storage devices include fuel cell hydrogen tanks and compressed-air systems, which store energy in chemical and mechanical forms, respectively.
  • 59
  • 11 Mar 2024
Topic Review
Effect of Wettability Parameters on Enhanced OIl Recovery
Modifying reservoir surface wetting properties is an appealing topic to the upstream oil and gas industry for enhancing hydrocarbon recovery, as the shifting of reservoir rock surface wetting from oil-wet to water-wet has enhanced the oil recovery (EOR) by as much as 70–80%. Wettability is defined as the ability of a fluid to stay in contact with a solid surface preferentially to another immiscible fluid present due to intermolecular interactions. The cohesive and adhesive forces describe the intermolecular interaction between solids and liquids. Cohesive force attracts similar molecules; adhesive force attracts different molecules. The balance of adhesive and cohesive forces of the oil–water–rock phase defines the wettability conditions of reservoir rocks. The wettability condition of reservoir rocks is one of the most critical factors influencing fluid flow in porous media, subsequently impacting the overall hydrocarbon recovery efficiency. Based on their wettability characteristics, oil reservoirs are divided into water-wet, oil-wet, mixed-wet, and intermediate-wet. Many experimental studies have contributed to the understanding of the wettability alteration mechanism. Despite the extensive research, concerns about a lack of understanding of the wettability alteration mechanisms in various reservoir conditions still exist. Microfluidic technologies, with microfabrication and reservoir micromodels, revolutionize researchers'  understanding of wettability alteration during enhanced oil recovery, surpassing traditional core-based experiments and offering real-time insights into geochemical changes.
  • 306
  • 11 Mar 2024
  • Page
  • of
  • 65