Topic Review
Gamified Waste Management Tool
Waste management is an increasingly visible and essential element to functioning civilization. However, while the theory of waste management is studied widely, waste management remains for many a difficult concept to understand. There is an opportunity to create an informative, easy-to-use simulator to help all types of individuals build an understanding of waste management and to evaluate the impact of various changes on waste management performance, particularly in the context of gamified tools. 
  • 1.1K
  • 17 Feb 2022
Topic Review
Gaming Computer
A gaming computer, also known as a gaming PC, is a specialized personal computer designed for playing video games. Gaming PCs typically differ from mainstream personal computers by using high-performance video cards and high core-count central processing units with raw performance. Gaming PCs are also used for other demanding tasks such as video editing. Many gamers and computer enthusiasts choose to overclock their CPU(s) and GPU(s) in order to gain extra performance. The added power draw needed to overclock either processing unit often requires additional cooling, using upgraded air cooling or water cooling.
  • 7.4K
  • 01 Nov 2022
Topic Review
GaN Electronic Devices
GaN has been widely used to develop devices for high-power and high-frequency applications owing to its higher breakdown voltage and high electron saturation velocity. The GaN HEMT radio frequency (RF) power amplifier is the first commercialized product that is fabricated using the conventional Au-based III–V device manufacturing process. In recent years, owing to the increased applications in power electronics, and expanded applications in RF and millimeter-wave (mmW) power amplifiers for 5G mobile communications, the development of high-volume production techniques derived from CMOS technology for GaN electronic devices has become highly demanded. 
  • 1.2K
  • 01 Jul 2021
Topic Review
GaN-Based LEDs: Modeling and Simulation
Light-emitting diodes (LEDs) based on Gallium Nitride (GaN) have been revolutionizing various applications in lighting, displays, biotechnology, and other fields. Many theoretical models have been developed for GaN-LED simulation, analysis, and design optimization, including carrier transport models, quantum well recombination models, and light extraction models. The overview below is a strongly abbreviated version of Ref. [1].
  • 1.5K
  • 17 Dec 2020
Biography
Gary Flandro
Gary Arnold Flandro (born March 30, 1934 in Salt Lake City, Utah)[1] is an United States aerospace engineer who currently holds the Boling Chair of Excellence in Space Propulsion (Emeritus) at the University of Tennessee Space Institute. He is also the Vice President and Chief Engineer at Gloyer-Taylor Laboratories (GTL). Flandro earned his B.S. in Mechanical Engineering from the University o
  • 621
  • 12 Dec 2022
Topic Review
Gas Dynamic Cold Spray
TIF Cold Spray (CS) (formerly gas dynamic cold spray) is a coating deposition method. Solid powders (1 to 50 micrometers in diameter) are accelerated in a supersonic gas jet to velocities up to 500–1000 m/s. During impact with the substrate, particles undergo plastic deformation and adhere to the surface. To achieve a uniform thickness the spraying nozzle is scanned along the substrate. Metals, polymers, ceramics, composite materials and nanocrystalline powders can be deposited using cold spraying. The kinetic energy of the particles, supplied by the expansion of the gas, is converted to plastic deformation energy during bonding. Unlike thermal spraying techniques, e.g., plasma spraying, arc spraying, flame spraying, or high velocity oxygen fuel (HVOF), the powders are not melted during the spraying process.
  • 744
  • 28 Nov 2022
Topic Review
Gas Hydrate Technology
Innovating methods for treating industrial wastewater containing heavy metals frequently incorporate toxicity-reduction technologies to keep up with regulatory requirements. This research reviews the latest advances, benefits, opportunities and drawbacks of several heavy metal removal treatment systems for industrial wastewater in detail. The conventional physicochemical techniques used in heavy metal removal processes with their advantages and limitations are evaluated. A particular focus is given to innovative gas hydrate-based separation of heavy metals from industrial effluent with their comparison, advantages and limitations in the direction of commercialization as well as prospective remedies. Clathrate hydrate-based removal is a potential technology for the treatment of metal-contaminated wastewater. In this research, a complete assessment of the literature is addressed based on removal efficiency, enrichment factor and water recovery, utilizing the gas hydrate approach. It is shown that gas hydrate-based treatment technology may be the way of the future for water management purposes, as the industrial treated water may be utilized for process industries, watering, irrigation and be safe to drink. 
  • 1.3K
  • 15 Apr 2022
Topic Review
Gas Turbine Power Generation Systems
This paper reviews the modeling techniques and control strategies applied to gas turbine power generation plants. Recent modeling philosophies are discussed and the state-of-the-art feasible strategies for control are shown. Research conducted in the field of modeling, simulation, and control of gas turbine power plants has led to notable advancements in gas turbines’ operation and energy efficiency. Tracking recent achievements and trends that have been made is essential for further development and future research. A comprehensive survey is presented here that covers the outdated attempts toward the up-to-date techniques with emphasis on different issues and turbines’ characteristics. Critical review of the various published methodologies is very useful in showing the importance of this research area in practical and technical terms. The different modeling approaches are classified and each category is individually investigated by reviewing a considerable number of research articles. Then, the main features of each category or approach is reported. The modern multi-variable control strategies that have been published for gas turbines are also reviewed. Moreover, future trends are proposed as recommendations for planned research.
  • 1.3K
  • 28 Jul 2020
Topic Review
Gas Turbines to the Hydrogen Energy Move
Land-based gas turbines (GTs) are continuous-flow engines that run with permanent flames once started and at stationary pressure, temperature, and flows at stabilized load. Combustors operate without any moving parts and their substantial air excess enables complete combustion. These features provide significant space for designing efficient and versatile combustion systems. In particular, as heavy-duty gas turbines have moderate compression ratios and ample stall margins, they can burn not only high- and medium-BTU fuels but also low-BTU ones. Hydrogen is an energy carrier and not a primary energy as there are very scarce natural sources thereof; the rare reservoirs of hydrogen originate from chemical reactions inside the earth crust and are sometimes referred to as “natural H2”or “white H2”.
  • 853
  • 14 Mar 2024
Topic Review
Gas Turbines with Water Injection and Full Evaporation
The concept behind humidifying gas turbines is that increasing the amount of water/steam injected into the turbine increases the amount of mass it moves. This results in a rise in the specific power output because the effort exerted by the compressor remains the same, and it takes far less effort to raise the pressure of a liquid than it does of a gas. The efficiency of the cycle may be improved by recovering the energy contained in the gas turbine’s exhaust and either preheating the injection water, making injection steam, or the recuperator’s preheating of the combustion oxidizer. The introduction of water prior to the combustor of a recuperated gas turbine lowers the compressed air’s temperature at the input of the recuperator. This results in an increase in the rate at which energy is recovered from the exhaust gas.
  • 3.0K
  • 27 Dec 2022
  • Page
  • of
  • 678
ScholarVision Creations