Topic Review
Chemical looping
Chemical looping technology in general, is the rising star in chemical technologies, which is capable of low CO2 emissions with applications in the production of heat, fuels, chemicals, and electricity. This entry discusses the technology in general, gives an overview of some pilot scale plants and the different chemical looping processes with focus on the production of heat and chemicals, highlights the importance of the development of oxygen carrier materials with suitable properties, 2.11.0.0 2.11.0.0
  • 3.1K
  • 02 Nov 2020
Topic Review
Salinity and Turbidity in the Red Sea
Several industrial and scientific underwater applications require high-speed wireless connectivity. Acoustic communications have low data rates and high latency, whereas attenuation in seawater severely limits radio frequency communications. Optical wireless communication is a promising solution, with high transmission rates (up to Gb/s) and little attenuation in water at visible wavelengths.
  • 3.1K
  • 08 Oct 2022
Topic Review
Architectural Perspective of Ant Nests
Ants are excellent architects in the animal kingdom. The activities of “design”, “material selection” and “construction” of their nests are full of magical secrets. After hundreds of millions of years of survival of the fittest, the nests of each species of ant are generally characterised by reasonable structure and good mechanical performance, and also reflect the law of “obtaining large and solid living space with the least amount of material”. The complex underground ant colony nest system is large in scale, stable in internal environmental characteristics, has excellent ventilation, appropriate humidity and temperature, and makes use of natural barriers, such as thin grasses, trees, sand and stone, around entrances and exits, as well as having good physical structure, resistant to pressure, water, heat and moisture. Ants have very strict requirements on the size, weight, lustre and colour of the building materials for the nest, such as soil particles. As social insects, ants are responsible for the site selection and materials selection of their nests, the design of the whole nest, organising and coordinating the grand construction process, and managing the nest. 
  • 3.1K
  • 26 Dec 2022
Topic Review
Railway Nationalization
Railway nationalization is the act of taking rail transport assets into public ownership. Several countries have at different times nationalized part or all of their railway system. More recently, the international trend has been towards privatization. In some areas, notably Great Britain, resultant problems with track maintenance have led back to a more mixed solution, with a nationalised infrastructure operator but privately run train operating companies. National characteristics influenced the structures under which countries' rail networks developed. Some national railways were always under direct State management, some were State-planned but privately operated (as in France, others were wholly private enterprises lightly regulated (as in Great Britain, Ireland and Spain). Nationalization was therefore a bolder step to take in some countries than in others. While ideology has played a role, so too has the need for systematic reconstruction of vital infrastructure devastated by war, often following a period of State control over private companies initiated during the conflict.
  • 3.1K
  • 01 Dec 2022
Topic Review
Probabilistic Slope Stability Evaluation
Evaluating the stability of slopes in soil is an important, interesting, and challenging aspect of civil engineering. Despite the advances that have been made, evaluating the stability of slopes remains a challenge. Slope failures are often caused by processes that increase shear stresses or decrease shear strengths of the soil mass [4, 9]. Water plays a role in many of the processes that reduce strength; water is also involved in many types of loads on slopes that increase shear stresses. Another factor involved in most slope failures is the presence of soils that contain clay minerals. In concept, any slope with a factor of safety above 1.0 should be stable [6, 10]. In practice, however, the level of stability is seldom considered acceptable unless the factor of safety is significantly greater than 1.0. In this study an attempt has been done to perform stability analyses corresponding to several different conditions, reflecting different stages in the life of the new railway embankment found in Ethiopia. As various parameters are involved and determined based on correlations, the probabilistic approach was employed to scrutinize the effects of uncertainty on the likelihood of failure. There is no problem with performing a single analysis in which the embankment is considered to be drained and is treated in terms of effective stresses, and in which the clay foundation material is considered to be undrained and is treated in terms of total stresses (during end-of-construction analysis). This is because equilibrium in terms of total stresses must be satisfied for both total and effective stress analyses [2]. The inertia slope stability analysis was used. Since the foundation materials are overconsolidated cohesive soils such as stiff to very stiff clays that tend to dilate during the seismic shaking. The embankment is also expected to be well graded compacted granular material [12]. The critical factor of safety for the railway embankment during short term analysis was found to be 2.199. However, it has increased by 17.6% during the long term analysis (i.e., 2.585). Typical minimum factor of safety used in slope design are about 1.5 for normal long-term loading conditions and about 1.3 for end-of- construction conditions.  Apart from that, the minimum short term and long term factor of safety were reduced by 44.5% and 35.9% respectively, due to the introduction of the horizontal seismic load in the limit equilibrium analysis. According to Hynes-Griffin and Franklin (1984) criteria [8] the minimum factor of safety for ~1m tolerable displacement is 1. However, the minimum factor of safety during the pseudostatic analysis (i.e., 1.221) was found to be 22% higher than the required minimum factor of safety. Beside, Newmark’s deformation analysis has been done to predict slope displacement. However, the analysis predicted zero permanent slope displacement. Since; the Newmark (1965) method assumes no deformation of the slope during the earthquake if the pseudostatic factor of safety is greater than 1.0. The more realistic probability of failure is likely in between of 0% and 6.9 %. The sensitivity analysis showed that, the cohesion of the clay layer (i.e., layer II) governs the stability of the railway embankment.
  • 3.1K
  • 30 Oct 2020
Topic Review
End-of-Life Vehicles Recycling
End-of-life vehicle (ELV) recycling is a process that spends energy and could be an energy source as well. This part of energy recovering depends on many different factors related to the broad and local aspects of ELV recycling. The ELV recycling process is consuming energy from different energy sources (electrical, fossil), however, this consumption is lower in relation to energy consumption during the production of new vehicle parts from the very beginning. ELVs have, in the first phase, been considered as an environmental problem, which must be solved through many decision-making approaches, directives, and standards. Accordingly, it may be concluded, that this issue is very complex since it includes a lot of relations concerning ELV recycling, as well as broad infrastructure and socio-economic environment factors. On the other hand, there is not enough relevant and reliable information related to the ELV recycling and energy recovery through ELV recycling process. This information can be obtained through user responses, financial analysis, business analysis, or some government body relevant information sources. Due to new regulations related to ELV recycling, the responsibility of manufacturers is becoming increasingly important. They are obligated to design and revise their processes and adapt them to new legislation norms.
  • 3.1K
  • 26 Oct 2020
Topic Review
Earthquake Early Warning Systems
An Earthquake Early Warning Systems (EEWS) is the combination of different elements, such as seismometers, sensors, communication appliances, computers, and alarm systems, able to detect and warm of the arrival of seismic waves. It serves to mitigate damages and losses , to be used primarily in moderate and high seismically active regions.  
  • 3.1K
  • 25 Feb 2021
Topic Review
Thorium-Based Nuclear Power
Thorium-based nuclear power generation is fueled primarily by the nuclear fission of the isotope uranium-233 produced from the fertile element thorium. A thorium fuel cycle can offer several potential advantages over a uranium fuel cycle [Note 1] —including much greater abundance of thorium found on Earth, superior physical and nuclear fuel properties, and reduced nuclear waste production. One advantage of thorium fuel is its low weaponization potential; it is difficult to weaponize the uranium-233/232 and plutonium-238 isotopes largely consumed in thorium reactors. Between 1999 and , the number of operational thorium reactors in the world has risen from zero, to a handful of research reactors, to commercial plans for producing full-scale thorium-based reactors for use as power plants on a national scale. Some believe thorium is key to developing a new generation of cleaner, safer nuclear power. In 2011 a group of scientists at the Georgia Institute of Technology assessed thorium-based power as "a 1000+ year solution or a quality low-carbon bridge to truly sustainable energy sources solving a huge portion of mankind’s negative environmental impact." However, development of thorium power has significant start-up costs. Development of breeder reactors in general (including thorium reactors, which are breeders by nature) will increase proliferation concerns. After studying the feasibility of using thorium, nuclear scientists Ralph W. Moir and Edward Teller suggested that thorium nuclear research should be restarted after a three-decade shutdown and that a small prototype plant should be built.
  • 3.1K
  • 18 Oct 2022
Topic Review
Electrocardiogram Sensor
It is well-known that cardiovascular disease is one of the major causes of death worldwide nowadays. Electrocardiogram (ECG) sensor is one of the tools commonly used by cardiologists to diagnose and detect signs of heart disease with their patients. Since fast, prompt and accurate interpretation and decision is important in saving the life of patients from sudden heart attack or cardiac arrest, many innovations have been made to ECG sensors. However, the use of traditional ECG sensors is still prevalent in the clinical settings of many medical institutions.
  • 3.1K
  • 10 Feb 2021
Topic Review
Geopolymer Concrete (GPC)
Geopolymer concrete (GPC) is a new material in the construction industry, with different chemical compositions and reactions involved in a binding material. The pozzolanic materials (industrial waste like fly ash, ground granulated blast furnace slag (GGBFS), and rice husk ash), which contain high silica and alumina, work as binding materials in the mix. The sustainable development can be achieved by employing geopolymers in construction industries, because it results in lower CO2 emissions, optimum utilization of natural resources, utilization of waste materials, low energy consumption, thermally stability, more cost-effective in long life infrastructure construction, and, socially, financial benefits and employment generation
  • 3.1K
  • 18 Apr 2022
  • Page
  • of
  • 649
Video Production Service