Topic Review
Frequency Multipliers for Terahertz Remote Sensing System
Terahertz (THz) electromagnetic waves have frequencies in the range of 0.1 THz to 10 THz, with corresponding wavelengths of 3 mm to 30 μm. This frequency range is adjacent to millimeter-wave electromagnetic frequencies and infrared light wavelengths, and is thereby associated with the engineering domain of both electromagnetics and photonics. Due to insufficient development and utilization, this frequency is often referred to as a “terahertz gap”. Terahertz-wave technologies have unique properties that include a large-magnitude skin depth, good directivity, wide bandwidth and high imaging resolution. Therefore, terahertz-wave technologies possess an unparalleled advantage for remote sensing applications.
  • 1.2K
  • 07 Jun 2022
Topic Review
Metal-Assisted Chemical Etching
The metal-assisted chemical etching (MACE) technique is commonly employed for texturing the wafer surfaces when fabricating black silicon (BSi) solar cells and is considered to be a potential technique to improve the efficiency of traditional Si-based solar cells.
  • 1.2K
  • 11 Nov 2021
Topic Review
Fuel Cell Electric Vehicles Technology
Fuel cell electric vehicles, which optimally combine the fuel cell system with hybrid energy storage systems, represented by batteries and ultracapacitors, to meet the dynamic power demand required by the electric motor and auxiliary systems.
  • 1.2K
  • 22 Jan 2021
Topic Review
Centralised Generation
Centralised generation refers the common process of electricity generation through large-scale centralised facilities, through Transmission lines to consumer. These facilities are usually located far away from consumers and distribute the electricity through high voltage transmission lines to a substation where it is then distributed to consumers. The basic concept being that incredibly large stations create electricity for a large group of people. The Vast majority of electricity used in Australia as well as the United States is created from Centralised Generation. Most Centralised Power Generation comes from large power plants run by fossil fuels such as coal or natural gas. Nuclear or large hydroelectricity plants are also commonly used. Many disagree with the processes of Centralised Generation as it often relies on electrical generation through processes of the combustion of fossil fuels, which are bad for the environment. However unsustainable the current system is, it is by far the most widely used, reliable and efficient system that is currently in use. Centralised Generation is fundamentally the opposite of distributed generation. Distributed generation is the small-scale generation of electricity to smaller groups of consumers. This can also include independently producing electricity by either solar or wind power. In recent years Distributed generation as has seen a spark in popularity due to its propensity to use renewable energy generation methods such as wind and solar.
  • 1.2K
  • 23 Nov 2022
Topic Review
Vehicle Tracking System
A vehicle tracking system combines the use of automatic vehicle location in individual vehicles with software that collects these fleet data for a comprehensive picture of vehicle locations. Modern vehicle tracking systems commonly use GPS or GLONASS technology for locating the vehicle, but other types of automatic vehicle location technology can also be used. Vehicle information can be viewed on electronic maps via the Internet or specialized software. Urban public transit authorities are an increasingly common user of vehicle tracking systems, particularly in large cities.
  • 1.2K
  • 04 Nov 2022
Topic Review
Machine Learning Applications in Microgrid Management System
The advent of renewable energy sources (RESs) in the power industry has revolutionized the management of these systems due to the necessity of controlling their stochastic nature. Deploying RESs in the microgrid (MG) as a subset of the utility grid is a beneficial way to achieve their countless merits in addition to controlling their random nature. Since a MG contains elements with different characteristics, its management requires multiple applications, such as demand response (DR), outage management, energy management, etc. The MG management can be optimized using machine learning (ML) techniques applied to the applications. This objective first calls for the microgrid management system (MGMS)’s required application recognition and then the optimization of interactions among the applications.
  • 1.2K
  • 16 Dec 2022
Topic Review
Battery Safety
Battery safety is a prominent concern for the deployment of electric vehicles (EVs). The battery powering an EV contains highly energetic active materials and flammable organic electrolytes. Usually, an EV battery catches fire due to its thermal runaway, either immediately at the time of the accident or can take a while to gain enough heat to ignite the battery chemicals. There are numerous battery abuse testing standards and regulations available globally. Therefore, battery manufacturers are always in dilemma to choose the safest one. Henceforth, to find the optimal outcome of these two major issues, six standards (SAE J2464:2009, GB/T 31485-2015:2015, FreedomCAR:2006, ISO 12405-3:2014, IEC 62660-2:2010, and SAND2017-6295:2017) and two regulations (UN/ECE-R100.02:2013 and GTR 20:2018), that are followed by more than fifty countries in the world, are investigated in terms of their abuse battery testing conditions (crush test).
  • 1.2K
  • 11 Nov 2021
Topic Review
AI Mk. VIII Radar
Radar, Airborne Interception, Mark VIII, or AI Mk. VIII for short, was the first operational microwave-frequency air-to-air radar. It was used by Royal Air Force night fighters from late 1941 until the end of World War II. The basic concept, using a moving parabolic antenna to search for targets and track them accurately, remained in use by most airborne radars well into the 1980s. Low-level development began in 1939 but was greatly sped after the introduction of the cavity magnetron in early 1940. This operated at 9.1 cm wavelength (3 GHz), much shorter than the 1.5 m wavelength of the earlier AI Mk. IV. Shorter wavelengths allowed it to use smaller and much more directional antennas. Mk. IV was blinded by the reflections off the ground from its wide broadcast pattern, which made it impossible to see targets flying at low altitudes. Mk. VIII could avoid this by keeping the antenna pointed upward, allowing it to see any aircraft at or above the horizon. The design was just beginning to mature in late 1941 when the Luftwaffe began low-level attacks. A prototype version, the Mk. VII, entered service on the Bristol Beaufighter in November 1941. A small number of these were sent to units across the UK to provide coverage at low altitudes while Mk. IV equipped aircraft operated at higher altitudes. After a small run of the improved Mk. VIIIA, the definitive Mk. VIII arrived in early 1942, offering higher power as well as a host of electronic and packaging upgrades. It arrived just as production rates of the De Havilland Mosquito began to improve, quickly displacing the Beaufighter units in RAF squadrons. Mk. VIII equipped Mosquitoes would be the premier night fighter from 1943 through the rest of the war. The Mk. VIII spawned a number of variants, notably the AI Mk. IX which included a lock-on feature to ease interceptions. A series of events, including a deadly friendly fire incident, so greatly delayed the Mk. IX that it never entered service. During the late-war period, many UK aircraft adopted the US SCR-720 under the name AI Mk. X. This worked on the same general principles as the Mk. VIII, but used a different display system that offered several advantages. Development of the basic system continued, and the Mk. IX would eventually briefly re-appear in greatly advanced form as the AI.17 during the 1950s.
  • 1.2K
  • 16 Nov 2022
Topic Review
Technologies for Railway Track Maintenance
Inspection and repair interventions play vital roles in the asset management of railways. Autonomous mobile manipulators possess considerable potential to replace humans in many hazardous railway track maintenance tasks with high efficiency and increased asset utilization. Railway track maintenance technologies ranges from handheld devices to whole train, from manually pushed trolley to autonomous robots. 
  • 1.2K
  • 02 Jun 2023
Topic Review
CeO2-based transition metal catalysts
The rational design and fabrication of highly-active and cost-efficient catalytic materials constitutes the main research pillar in catalysis field. In this context, the fine-tuning of size and shape at nanometer scale can exert an intense impact not only on the inherent reactivity of catalyst’s counterparts but also on their interfacial interactions, opening up new horizons for the development of highly active and robust materials. The main implications of ceria nanoparticles’ shape engineering (rods, cubes, polyhedra) in catalysis are revealed, on the ground of some of the most pertinent heterogeneous reactions, such as CO2 hydrogenation, CO oxidation, and N2O decomposition. It is clearly revealed that shape functionalization can remarkably affect the intrinsic features and in turn the reactivity of ceria nanoparticles. More importantly, by combining ceria nanoparticles (CeO2 NPs) of specific architecture with various transition metals (e.g., Cu, Fe, Co, Ni) remarkably active multifunctional composites can be obtained due mainly to the synergistic metal-ceria interactions, providing the design principles of earth-abundant metal oxide catalysts for various real-life environmental and energy applications.
  • 1.2K
  • 22 Apr 2021
  • Page
  • of
  • 650
ScholarVision Creations