Topic Review
Plant Isoflavones Daidzein
Isoflavones (including daidzein, the glycoside forms of daidzein, and glycitein, the methoxylated form of daidzein) are bioactive compounds that are present in significant quantities in legumes, soybeans, green beans, and mung beans.
  • 511
  • 29 Apr 2021
Topic Review
IPSCs and organoids in ASD
Autism spectrum disorder (ASD) encompasses a broad range of complex polygenic and multifactorial neurodevelopmental diseases affecting social interaction, communication, interests, and behavior. The major limit to ASD research remains a lack of relevant models which can faithfully re-capitulate key features of the pathology. Recent advances in induced pluripotent stem cells (iPSCs), reprogrammed from somatic cells of patients, have provided a promising cellular tool for disease modelling and development of novel drug treatments. Moreover, iPSCs can be differentiated and organized into 3D organoids, providing a model which mimics the complexity of the brain’s architecture. 
  • 511
  • 15 Jun 2021
Topic Review
Uses of Traditional Plants for Diabetes Nephropathy
Diabetic nephropathy (DN) is a serious kidney illness characterized by proteinuria, glomerular enlargement, reduced glomerular filtration, and renal fibrosis. DN is the most common cause of end-stage kidney disease, accounting for nearly one-third of all cases of diabetes worldwide.
  • 511
  • 08 Jul 2022
Topic Review
Bioactive Compounds in Oral Stem Cell-Meditated Regeneration
Stem cells are a well-known autologous pluripotent cell source, having excellent potential to develop into specialized cells, such as brain, skin, and bone marrow cells. The oral cavity is reported to be a rich source of multiple types of oral stem cells, including the dental pulp, mucosal soft tissues, periodontal ligament, and apical papilla. Oral stem cells were useful for both the regeneration of soft tissue components in the dental pulp and mineralized structure regeneration, such as bone or dentin, and can be a viable substitute for traditionally used bone marrow stem cells.  The role of bioactive compounds in oral stem cell-meditated regeneration is discussed.
  • 511
  • 11 Oct 2022
Topic Review
Faces of Autophagy Inhibition in Cisplatin Therapy
Cisplatin treatment promotes autophagy in both cisplatin-sensitive and cisplatin-resistant cells. Consequently, inhibition of autophagy can be considered a strategy for improving cisplatin chemosensitivity. This is the positive side, which is called Yang. However, the functional activity of cisplatin-induced autophagy is related to different genetic phenotypes and tumor types as well as the microenvironment of the tumor. In addition, preclinical studies have found that pharmacological autophagy inhibitors are not uniformly effective in enhancing the effectiveness of cisplatin and may also exacerbate the side effects of cisplatin toward normal tissue. This is the negative side, which is called Yin. 
  • 510
  • 23 Mar 2022
Topic Review Video
Exosomes as Nanosystems of Nucleic Acids and Drugs
Exosomes are defined as a type of extracellular vesicle released when multivesicular bodies of the endocytic pathway fuse with the plasma membrane. They are characterized by their role in extracellular communication, partly due to their composition, and present the ability to recognize and interact with cells from the immune system, enabling an immune response. Their targeting capability and nanosized dimensions make them great candidates for cancer therapy. As chemotherapy is associated with cytotoxicity and multiple drug resistance, the use of exosomes targeting capabilities, able to deliver anticancer drugs specifically to cancer cells, is a great approach to overcome these disadvantages. 
  • 510
  • 21 Nov 2022
Topic Review
Environmental Pollution's Impact on cancer
Nowadays, cancer is the leading cause of death in humans before they reach old age , and some specific, once rare, types connected to environmental and occupational contamination are increasing (e.g., testicular cancer , thyroid cancer , non-Hodgkin’s lymphoma , leukaemia , etc.). After about three decades of research from the first evidence of a link between environmental pollution and cancer in the 1980s, it is easy to feel that we are all, directly or indirectly, subject to an uncontrolled experiment. This makes human studies difficult because humanity may, at this point, lack unexposed controls, such as human beings who have never been in contact with environmental pollution.
  • 507
  • 07 Jun 2021
Topic Review
Heterogeneity Sources in Metabolic Dysfunction-Associated Fatty Liver Disease
Non-alcoholic fatty liver disease (NAFLD) is a slowly progressing disease, beginning with isolated liver steatosis that evolves in a subset of patients to non-alcoholic steatohepatitis (NASH), liver fibrosis, cirrhosis and hepatocellular carcinoma (HCC). It was recently proposed to redefine NAFLD to metabolic dysfunction-associated fatty liver disease (MAFLD) in which other known causes of liver disease such as alcohol consumption or viral hepatitis do not need to be excluded. Revised nomenclature envisions speeding up and facilitating anti-MAFLD drug development by means of patient stratification whereby each subgroup would benefit from distinct pharmacological interventions. 
  • 507
  • 24 Jan 2022
Topic Review
Immunotherapy for Cutaneous Malignant Melanoma
Malignant melanoma (mM) is the leading cause of death among cutaneous malignancies. While its incidence is increasing, the most recent cancer statistics show a small but clear decrease in mortality rate. This trend reflects the introduction of novel and more effective therapeutic regimens, including the two cornerstones of melanoma therapy: immunotherapies and targeted therapies. Unlike chemotherapies or radiation, in which the therapy directly induces cancer cell death, immunotherapies stimulate the patient’s immune system to control and eliminate the tumor. Advantages of immunotherapies over traditional cancer treatments include increased durability for long-term control or even cure and more precisely targeted anti-tumor activity that spares healthy tissues, many times with comparable or even reduced overall toxicity. The high immunogenicity and somatic mutation burden of melanoma likely contribute to the success of immunotherapy. Treatments combining immunotherapies with targeted therapies, which disable the carcinogenic products of mutated cancer cells, have further increased treatment efficacy and durability. Toxicity and resistance, however, remain critical challenges to the field. There are three types of immunotherapies currently approved by the US Food and Drug Administration (FDA) for the treatment of advanced melanoma: (1) T-cell stimulating cytokines (i.e. interferon (IFN)-α2b and interleukin-2 (IL-2)); (2) T-cell exhaustion-mitigating immune checkpoint inhibitors (ICI); and (3) a dendritic cell (DC)-activating oncolytic virus (T-VEC). Still others, such as adoptive cell transfer (ACT), hold strong promise for the future.
  • 506
  • 20 Apr 2022
Topic Review
Histone Deacetylases in Human Cancers
Histone modification is an essential mark in maintaining cellular memory and, therefore, loss of this mark can lead to tumor transformation. As these epigenetic changes are reversible, the use of molecules that can restore the functions of the enzymes responsible for the changes is therapeutically necessary. Natural molecules, mainly those isolated from medicinal plants, have demonstrated significant inhibitory properties against enzymes related to histone modifications, particularly histone deacetylases (HDACs). Flavonoids, terpenoids, phenolic acids, and alkaloids exert significant inhibitory effects against HDAC and exhibit promising epi-drug properties. This suggests that epi-drugs against HDAC could prevent and treat various human cancers. 
  • 505
  • 20 Apr 2022
  • Page
  • of
  • 106
Video Production Service