Topic Review
Mitophagy Modulation
Mitophagy, as a selective variant of autophagy, is characterized by molecular mechanisms that allow selective degradation of mitochondria.
  • 642
  • 10 Feb 2021
Topic Review
Mitochondria-Targeted, Nanoparticle-Based Drug-Delivery Systems
Mitochondria play a key role in the production of metabolic energy in eukaryotic cells. However, apart from energy production, mitochondria also perform several other functions, namely, calcium signaling, cell proliferation, cell cycle regulation, and apoptosis. With growing interest in mitochondria, significant efforts are being made in mitochondria-targeting pharmaceutical interventions, resulting in ‘mitochondrial medicine’ as an emerging area of healthcare research. Mitochondria-targeting nanoparticles (NPs) are now a promising field of drug-delivery systems.
  • 834
  • 19 May 2022
Topic Review
Mithramycin
Mithramycin is an antineoplastic antibiotic. The use of mithramycin has been previously limited by its narrow therapeutic window. Recent advances in semisynthetic methods have led to mithramycin analogs with improved pharmacological profiles. Mithramycin inhibits the activity of the transcription factor Sp1, which is closely linked with ovarian tumorigenesis and platinum-resistance.
  • 473
  • 02 Feb 2021
Topic Review
Miscellaneous Natural Products for COVID-19
Natural medicine has proven its effectiveness against various illnesses. Most of the pharmaceutical agents currently used can trace their origin to the natural products in one way, shape, or form. Using natural products, which is part of various traditional medical systems to prevent and/or treat diseases, dates back thousands of years in different parts of the world.
  • 451
  • 28 Oct 2022
Topic Review
MiRNA-7
MicroRNAs (miRNAs, miRs) are small non-coding RNA (ncRNA) molecules capable of regulating post-transcriptional gene expression. Imbalances in the miRNA network have been associated with the development of many pathological conditions and diseases, including cancer. Recently, miRNAs have also been linked to the phenomenon of multidrug resistance (MDR). MiR-7 is one of the extensively studied miRNAs and its role in cancer progression and MDR modulation has been highlighted. MiR-7 is engaged in multiple cellular pathways and acts as a tumor suppressor in the majority of human neoplasia. Its depletion limits the effectiveness of anti-cancer therapies, while its restoration sensitizes cells to the administered drugs.
  • 828
  • 25 Feb 2021
Topic Review
miRNA and lncRNA Dysregulation in Diabetes
Diabetes is one of the most frequently occurring metabolic disorders, affecting almost one tenth of the global population. Noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), are involved in the regulation of gene expression as well as various disease pathways in humans. Several ncRNAs are dysregulated in diabetes and are responsible for modulating the expression of various genes that contribute to the ‘symptom complex’ in diabetes.
  • 462
  • 02 Nov 2022
Topic Review
Microfluidic for Cutaneous Wound Healing
Cutaneous wound healing is a complex, multi-stage process involving direct and indirect cell communication events with the aim of efficiently restoring the barrier function of the skin. One key aspect in cutaneous wound healing is associated with cell movement and migration into the physically, chemically, and biologically injured area, resulting in wound closure. Understanding the conditions under which cell migration is impaired and elucidating the cellular and molecular mechanisms that improve healing dynamics are therefore crucial in devising novel therapeutic strategies to elevate patient suffering, reduce scaring, and eliminate chronic wounds. Following the global trend towards the automation, miniaturization, and integration of cell-based assays into microphysiological systems, conventional wound healing assays such as the scratch assay and cell exclusion assay have recently been translated and improved using microfluidics and lab-on-a-chip technologies. These miniaturized cell analysis systems allow for precise spatial and temporal control over a range of dynamic microenvironmental factors including shear stress, biochemical and oxygen gradients to create more reliable in vitro models that resemble the in vivo microenvironment of a wound more closely on a molecular, cellular, and tissue level. 
  • 632
  • 08 Jun 2021
Topic Review
Microfluidic Approaches for Affinity-Based Exosome Separation
As a subspecies of extracellular vesicles (EVs), exosomes have provided promising results in diagnostic and theranostic applications in recent years. The nanometer-sized exosomes can be extracted by liquid biopsy from almost all body fluids, making them especially suitable for mainly non-invasive point-of-care (POC) applications. To achieve this, exosomes must first be separated from the respective biofluid. Impurities with similar properties, heterogeneity of exosome characteristics, and time-related biofouling complicate the separation. Due to the compactness of state-of-the-art methods available for the separation of exosomes, quick analysis time and portable form factor, these microfluidic devices are particularly suitable to deliver fast and reliable results for POC applications. For these devices, new manufacturing methods (e.g., laminating, replica molding and 3D printing) that use low-cost materials and do not require clean rooms are presented. Additionally, special flow routes and patterns that increase contact surfaces, as well as residence time, and thus improve affinity purification are displayed. 
  • 273
  • 25 Aug 2022
Topic Review
Microbiota
The human gut microflora comprises over 1000 species and more than 7000 strains, representing 1013–1014 bacterial cells, which is ten times more numerous than other cells. Healthy gut microbiota is mainly composed of the phyla Firmicutes and Bacteroidetes, representing around 90% of the human gut flora, followed by Actinobacteria, Verrucomicrobia, and Proteobacteria.
  • 981
  • 18 Jan 2022
Topic Review
Microbial Hyaluronic Acid Production
Microbial production of hyaluronic acid (HA) is an area of research that has been gaining attention in recent years due to the increasing demand for this biopolymer for several industrial applications. Hyaluronic acid is a linear, non-sulfated glycosaminoglycan that is widely distributed in nature and is mainly composed of repeating units of N-acetylglucosamine and glucuronic acid. It has a wide and unique range of properties such as viscoelasticity, lubrication, and hydration, which makes it an attractive material for several industrial applications such as cosmetics, pharmaceuticals, and medical devices.
  • 1.5K
  • 02 Mar 2023
  • Page
  • of
  • 106
Video Production Service