Topic Review
Vitamin D Target Genes
The biologically active form of vitamin D3, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), modulates innate and adaptive immunity via genes regulated by the transcription factor vitamin D receptor (VDR). In order to identify the key vitamin D target genes involved in these processes, transcriptome-wide datasets were compared, which were obtained from a human monocytic cell line (THP-1) and peripheral blood mononuclear cells (PBMCs) treated in vitro by 1,25(OH)2D3, filtered using different approaches, as well as from PBMCs of individuals supplemented with a vitamin D3 bolus. The led to the genes ACVRL1, CAMP, CD14, CD93, CEBPB, FN1, MAPK13, NINJ1, LILRB4, LRRC25, SEMA6B, SRGN, THBD, THEMIS2 and TREM1. Public epigenome- and transcriptome-wide data from THP-1 cells were used to characterize these genes based on the level of their VDR-driven enhancers as well as the level of the dynamics of their mRNA production.
  • 936
  • 15 Apr 2022
Topic Review
Vitamin D Signaling
The vitamin D metabolite 1α,25-dihydroxyvitamin D3 is the natural, high-affinity ligand of the transcription factor vitamin D receptor (VDR). In many tissues and cell types, VDR binds in a ligand-dependent fashion to thousands of genomic loci and modulates, via local chromatin changes, the expression of hundreds of primary target genes. Thus, the epigenome and transcriptome of VDR-expressing cells is directly affected by vitamin D. Vitamin D target genes encode for proteins with a large variety of physiological functions, ranging from the control of calcium homeostasis, innate and adaptive immunity, to cellular differentiation.
  • 514
  • 12 Apr 2022
Topic Review
Vitamin D on Skin Aging
The normal vitamin D3 status is important for a general prevention of premature aging maintaining a healthful skin aging. Vitamin D3metabolites including its classical (1,25(OH)2D3) and novel (CYP11A1-intitated) D3hydroxyderivatives exert many beneficial protective effects on the skin, which could influence the process of premature aging via many different mechanisms, leading to a delay or attenuation of both chronological skin aging and photoaging. Skin-resident cells (keratinocytes, fibroblasts, and sebocytes) are capable of locally activating vitamin D3and exhibiting a diverse biological effect such as photoprotection and immunosuppression, similar to the UVR-induced one.
  • 632
  • 29 Sep 2021
Topic Review
Vitamin D in the Context of Evolution
For at least 1.2 billion years, eukaryotes have been able to synthesize sterols and, therefore, can produce vitamin D when exposed to UV-B. Vitamin D endocrinology was established some 550 million years ago in animals, when the high-affinity nuclear receptor VDR (vitamin D receptor), transport proteins and enzymes for vitamin D metabolism evolved. This enabled vitamin D to regulate, via its target genes, physiological process, the first of which were detoxification and energy metabolism. In this way, vitamin D was enabled to modulate the energy-consuming processes of the innate immune system in its fight against microbes. In the evolving adaptive immune system, vitamin D started to act as a negative regulator of growth, which prevents overboarding reactions of T cells in the context of autoimmune diseases. When, some 400 million years ago, species left the ocean and were exposed to gravitation, vitamin D endocrinology took over the additional role as a major regulator of calcium homeostasis, being important for a stable skeleton.
  • 302
  • 29 Jul 2022
Topic Review
Vitamin D in Dairy Products
The term Vitamin D was created in 1922, describing a vitamin able to promote calcium deposition. Vitamin D in nature is available as ergocalciferol (vitamin D2) or cholecalciferol (vitamin D3).
  • 3.4K
  • 05 Nov 2020
Topic Review
Vitamin D in Cognitive Dysfunction
Vitamin D is necessary for all vertebrates, including humans, to maintain adequate phosphate and calcium levels in the blood, thereby helping to develop normal bone, optimal maintenance of muscle contractions, and cellular functions in different parts of the body. The developmental disabilities induced by vitamin D deficiency (VDD) include neurological disorders (e.g., attention deficit hyperactivity disorder, autism spectrum disorder, schizophrenia) characterized by cognitive dysfunction. 
  • 419
  • 28 Jul 2022
Topic Review
Vitamin D Fortification
By utilizing historical changes in Danish legislation related to mandatory vitamin D fortification of margarine, which was implemented in the mid 1930s and abruptly abandoned in June 1985, the studies in the D-tect project investigated the effects of vitamin D on health outcomes in individuals, who during gestation were exposed or unexposed to extra vitamin D from fortified margarine.
  • 553
  • 30 Aug 2021
Topic Review
Vitamin D Deficiency and T2DM
It seems that vitamin D deficiency may be one of the crucial factors responsible for increased cancer risk among T2DM patients. Vitamin D via alleviation of insulin resistance, hyperglycemia, oxidative stress and inflammation reduces diabetes driven cancer risk factors. Moreover, vitamin D strengthens the DNA repair process, and regulates apoptosis and autophagy of cancer cells as well as signaling pathways involved in tumorigenesis i.e., tumor growth factor β (TGFβ), insulin-like growth factor (IGF) and Wnt-β-Cathenin. It should also be underlined that many types of cancer cells present alterations in vitamin D metabolism and action as a result of Vitamin D Receptor (VDR) and CYP27B1 expression dysregulation.
  • 410
  • 22 Jul 2021
Topic Review
Vitamin D and Its Neuroimmunological Roles
Vitamin D consists of a group of structurally related secosteroids, including cholecalciferol, ergocalciferol, 25-hydroxyvitamin D (25(OH)D, calcidiol), and 1,25-dihydroxyvitamin D (1,25(OH)2D, calcitriol). Vitamin D, a fat-soluble neuroactive prohormone, is increasingly recognized as not only a marker of overall health but also a necessary neurosteroid and immunomodulator, exerting pleiotropic effects on the neurological system. 
  • 149
  • 15 Sep 2023
Topic Review
Vitamin D and Inflammation in Obesity
Obesity affects more than one billion people worldwide and often leads to cardiometabolic chronic comorbidities. It induces senescence-related alterations in adipose tissue, and senescence is closely linked to obesity. Fully elucidating the pathways through which vitamin D exerts anti-inflammatory effects may improve our understanding of local adipose tissue inflammation and the pathogenesis of metabolic disorders.
  • 91
  • 02 Jan 2024
  • Page
  • of
  • 79