Topic Review
Antidiabetic Properties of Curcumin II
Type 2 diabetes mellitus (T2DM) is a growing metabolic disease characterized by insulin resistance and hyperglycemia. Current preventative and treatment approaches to insulin resistance and T2DM lack in efficacy, resulting in the need for new approaches to prevent and treat the disease. In recent years, epidemiological studies have suggested that diets rich in fruits and vegetables have beneficial health effects, including protection against insulin resistance and T2DM. Curcumin, a polyphenol found in turmeric, and curcuminoids have been reported to have antioxidant, anti-inflammatory, hepatoprotective, nephroprotective, neuroprotective, immunomodulatory and antidiabetic properties. Here we are summarizing the existing in vivo studies examining the antidiabetic effects of curcumin.
  • 1.0K
  • 29 Oct 2020
Topic Review
Antidiabetic Properties of Naringenin
Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by insulin resistance and hyperglycemia and is associated with personal health and global economic burdens. Current strategies/approaches of insulin resistance and T2DM prevention and treatment are lacking in efficacy resulting in the need for new preventative and targeted therapies. In recent years, epidemiological studies have suggested that diets rich in vegetables and fruits are associated with health benefits including protection against insulin resistance and T2DM. Naringenin, a citrus flavanone, has been reported to have antioxidant, anti-inflammatory, hepatoprotective, nephroprotective, immunomodulatory and antidiabetic properties.
  • 698
  • 14 Jul 2021
Topic Review
Antidiabetic Properties of Plant Secondary Metabolites
Plants with a general tonic effect, plants containing insulin-like substances, plant purifiers, and plants rich in vitamins, organic acids, and other nutrients have been shown to play an important role in the treatment and prevention of type 2 diabetes mellitus and its complications.
  • 361
  • 19 Jun 2023
Topic Review
Antiepileptic Drugs
For drugs, such as antiepileptic drugs (AEDs), whose therapeutic or toxic effects are more closely related to blood levels than to a specific dose, monitoring of plasma levels plays a crucial role. Many drugs used in epilepsy therapy often cause acute poisonings (carbamazepine, oxcarbazepine, valproic acid, lamotrigine). AEDs do not have an ideal pharmacokinetic profile, which at the same time qualifies them to monitor both in the therapeutic and toxic aspects. Currently, a great benefit for patients using various AEDs is adjusting the dosage to their individual needs and monitoring sufficient blood concentrations. There is still a need to develop new, rapid methods that meet the validation criteria. This trend has been observed in the last few years in the bioanalysis of different type of biological samples, not only blood, serum or plasma, but also saliva and blood/serum/plasma dried spots technique.
  • 583
  • 01 Dec 2020
Topic Review
Antiepileptic Drugs in Human Glioblastoma
Glioblastoma (GBM) is characterized by fast-growing cells, genetic and phenotypic heterogeneity, and radio-chemo-therapy resistance, contributing to its dismal prognosis. Various medical comorbidities are associated with the natural history of GBM. The most disabling and greatly affecting patients’ quality of life are neurodegeneration, cognitive impairment, and GBM-related epilepsy (GRE). Hallmarks of GBM include molecular intrinsic mediators and pathways, but emerging evidence supports the key role of non-malignant cells within the tumor microenvironment in GBM aggressive behavior. In this context, hyper-excitability of neurons, mediated by glutamatergic and GABAergic imbalance, contributing to GBM growth strengthens the cancer-nervous system crosstalk. Pathogenic mechanisms, clinical features, and pharmacological management of GRE with antiepileptic drugs (AEDs) and their interactions are poorly explored, yet it is a potentially promising field of research in cancer neuroscience. 
  • 455
  • 01 Mar 2023
Topic Review
Antifungal Drug Resistance
Fungal infections, named mycosis, can cause severe invasive and systemic diseases that can even lead to death. In recent years, epidemiological data have recorded an increase in cases of severe fungal infections, caused mainly by a growing number of immunocompromised patients and the emergence of fungal pathogenic forms that are increasingly resistant to antimycotic drug treatments.
  • 451
  • 13 Apr 2023
Topic Review
Antifungal Drugs against Paracoccidioidomycosis
Paracoccidioidomycosis is a neglected disease that causes economic and social impacts, mainly affecting people of certain social segments, such as rural workers. The limitations of antifungals, such as toxicity, drug interactions, restricted routes of administration, and the reduced bioavailability in target tissues, have become evident in clinical settings. These factors, added to the fact that Paracoccidioidomycosis (PCM) therapy is a long process, lasting from months to years, emphasize the need for the research and development of new molecules.
  • 569
  • 16 Dec 2020
Topic Review
Antifungal Susceptibility Testing for Fungi
Invasive fungal infections (IFIs) are associated with high mortality rates and timely appropriate antifungal therapy is essential for good outcomes. Emerging antifungal resistance among Candida and Aspergillus spp., the major causes of IFI, is concerning and has led to the increasing incorporation of in vitro antifungal susceptibility testing (AST) to guide clinical decisions.
  • 802
  • 10 Feb 2021
Topic Review
Antifungal Therapy
Antifungals (also referred to as antimycotics) are the type of antibiotics used to treat fungal infections. In contrast to bacteria, fungi are eukaryotic organisms; thus fungal cells are very similar to our own cells. Because of this there is a limited number of selective targets and the current arsenal of antifungal drugs is very limited, which contributes to high mortality rates. In addition, development of resistance against current antifungals poses additional challenges. Clearly, new antifungal agents are urgently needed. 
  • 1.7K
  • 22 Oct 2020
Topic Review Peer Reviewed
Antifungals and Drug Resistance
Antifungal drugs prevent topical or invasive fungal infections (mycoses) either by stopping growth of fungi (termed fungistatic) or by killing the fungal cells (termed fungicidal). Antibiotics also prevent bacterial infections through either bacteriostatic or bactericidal mechanisms. These microorganisms successfully develop resistance against conventional drugs that are designed to kill or stop them from multiplying. When a fungus no longer responds to antifungal drug treatments and continues to grow, this is known as antifungal drug resistance. Bacteria have an amazing capacity to become resistant to antibiotic action as well, and the effectiveness of the scarce antifungal arsenal is jeopardised by this antibiotic resistance, which poses a severe threat to public health.
  • 1.8K
  • 21 Oct 2022
  • Page
  • of
  • 1352
ScholarVision Creations