Topic Review
3D Bone Bioprinting
Every year, approximately a couple of million bone grafts are performed worldwide to treat bone lesions, of which about 1 million only in Europe, thus bone regeneration is necessary to replace the damaged tissue, while the improvement of bone healing, both qualitatively and quantitatively, is mandatory. Bone tissue is constituted by cells with functions carefully coordinated, and a complex cross-talk between bone forming and inflammatory cells is known to guide successful regeneration, thus repairing bone is not an easy task. Autografts are still considered the gold standard for repairing bone defects, although they are not without significant drawbacks, such as donor site availability and possible morbidity. To overcome the pitfalls of grafts, researchers relied on bone tissue engineering (BTE) and 3D bioprinting techniques to produce cell-laden scaffolds, in which bone biological components are assembled to form a 3D environment. Several techniques of bone bioprinting have been developed: inkjet, extrusion and light-based 3D printers, which use different bioinks, i.e., the printing materials.
  • 1.5K
  • 13 Apr 2021
Topic Review
3D Guided Insertion of Orthodontic Titanium Miniscrews
Orthodontic mini-implants (MIs), also called temporary anchorage devices (TADs), have been considered to be effective tools for intraoral anchorage reinforcement for many years. Their main advantages are their easy application, the possibility to use them at various stages of treatment and the predictability of biomechanical effects.
  • 686
  • 10 Dec 2021
Topic Review
3D Imaging in Laparoscopic Liver Surgery
Liver resection is recognized worldwide as a potentially curative treatment for patients with primary and secondary malignancies and resectable disease.  Preoperative 3D reconstructions and printing as well as augmented reality can increase the knowledge of the specific anatomy of the case and therefore plan the surgery accordingly and tailor the procedure on the patient. Furthermore, the indocyanine green retention dye is an increasingly used tool that can nowadays improve the precision during laparoscopic hepatectomies, especially when considering anatomical resection. The use of preoperative modern imaging and intraoperative indocyanine green dye are key to successfully perform complex hepatectomies such as laparoscopic parenchymal sparing liver resections.
  • 564
  • 09 Dec 2021
Topic Review
3D Lung Cancer Models
3D models of cancer primarily refer to patient-derived xenografts, spheroids, and organoids and have been established for a variety of cancer types, including lung cancer. 3D lung cancer models have been demonstrated to more accurately model patient cancers and have the potential to advance basic, translational, and clinical studies.
  • 678
  • 13 Apr 2021
Topic Review
3D Modeling of Epithelial Tumors
The current statistics on cancer show that 90% of all human cancers originate from epithelial cells. Breast and prostate cancer are examples of common tumors of epithelial origin that would benefit from improved drug treatment strategies. About 90% of preclinically approved drugs fail in clinical trials, partially due to the use of too simplified in vitro models and a lack of mimicking the tumor microenvironment in drug efficacy testing. This entry focuses on the epithelial cancers, followed by experimental models designed to recapitulate the epithelial tumor structure and microenvironment. A specific focus is to put on novel technologies for cell culture of spheroids, organoids, and 3D-printed tissue-like models, utilizing biomaterials of natural or synthetic origins, and how the models could be utilized for nanotechnology-based drug delivery in the future.
  • 646
  • 24 Jun 2021
Topic Review
3D Pancreatic Cancer Models
Pancreatic cancer is an extremely lethal malignancy with a survival rate lower than any other cancer type. For decades, two-dimensional (2D) cultures have been the cornerstone for studying cancer cell biology and drug testing, due to their simplicity and cost. However, their inability to reconstitute the tumor architecture, the absence of nutrient and oxygen supply gradients, as well as the lack of appropriate mechano-forces that mimic the extracellular microenvironment, make them an inadequate model to accurately reproduce tissue level-specific characteristics. Bioengineering systems, such as three-dimensional (3D) patient-specific models, are progressively emerging as systems better able to mimic the biology of pancreatic tumors and to test new anticancer therapies, as they more efficiently recapitulate the complex tumor microenvironment characteristic of pancreatic tumors.
  • 745
  • 22 Mar 2021
Topic Review
3D Printed Models in Cardiovascular Disease
Three-dimensional (3D) printed models are increasingly used in medical education, with promising results achieved when compared to traditional teaching methods. Studies have shown its educational value in two areas as assessed by medical students and clinicians (cardiothoracic surgeons, cardiologists, cardiac imaging specialists including radiologists and radiographers, residents or registrars, and clinical nurses).
  • 391
  • 30 Sep 2022
Topic Review
3D Printing
Three-dimensional (3D) printing technology holds great potential to fabricate complex constructs in the field of regenerative medicine. Researchers in the surgical fields have used 3D printing techniques and their associated biomaterials for education, training, consultation, organ transplantation, plastic surgery, surgical planning, dentures, and more. In addition, the universal utilization of 3D printing techniques enables researchers to exploit different types of hardware and software in, for example, the surgical fields. To realize the 3D-printed structures to implant them in the body and tissue regeneration, it is important to understand 3D printing technology and its enabling technologies.
  • 1.8K
  • 20 Apr 2021
Topic Review
3D Printing and Nanotechnologies in Biofilms
Biofilms remain one of the most pervasive complications of the medical field, representing 50–70% of all nosocomial infections and up to 80% of total microbial infections. Since biofilms contain intricately small matrices, different microenvironments, and accumulations of biodiverse microorganisms of different resistances, these structures end up being difficult to target.
  • 325
  • 08 Oct 2023
Topic Review
3D Printing for Periodontal Regeneration
The three-dimensional printing of scaffolds is an interesting alternative to the traditional techniques of periodontal regeneration. This technique uses computer assisted design and manufacturing after CT scan. After 3D modelling, individualized scaffolds are printed by extrusion, selective laser sintering, stereolithography, or powder bed inkjet printing. These scaffolds can be made of one or several materials such as natural polymers, synthetic polymers, or bioceramics.
  • 1.1K
  • 14 Apr 2021
  • Page
  • of
  • 1352
Video Production Service