Topic Review
Epilepsy in Down Syndrome
Individuals with Down syndrome (DS) have an increased risk for epilepsy during the whole lifespan, but especially after age 40 years. The increase in the number of individuals with DS living into late middle age due to improved health care is resulting in an increase in epilepsy prevalence in this population. However, these epileptic seizures are probably underdiagnosed and inadequately treated. This late onset epilepsy is linked to the development of symptomatic Alzheimer’s disease (AD), which is the main comorbidity in adults with DS.
  • 881
  • 02 Jul 2021
Topic Review
L19-TNF
Tumor necrosis factor (TNF) is used as a pro-inflammatory payload to trigger haemorrhagic necrosis and boost anti-cancer immunity at the tumor site. There is  a depotentiated version of TNF (carrying the single point mutation I97A), which displayed reduced binding affinity to its cognate receptor tumor necrosis factor receptor 1 (TNFR-1) and lower biocidal activity. 
  • 881
  • 29 Mar 2022
Topic Review
Dietary Nitrates in Sports Nutrition
Higher intake of nitrates from the diet can increase the bioavailability of nitric oxide (NO) via the nitrate–nitrite–NO pathway. Increased production of NO (e.g., in mitochondria, blood vessel cells, muscle cells) may improve physical performance. Nevertheless, the increased availability of NO via daily diet or supplementation does not always lead to improved performance in some individuals. Research observations suggest there might be fibre-type specific effects of dietary nitrates (DN) intake. It seems that ergogenicity is somehow related to the fibre-type ratio in muscles, augmenting the exercise economy and performance more likely via type II muscle fibres than type I. Therefore, more consistent and positive improvements in physical performance are usually observed in less-trained athletes (VO2max <65 mL/min/kg) or untrained. Statistically non-significant effects on performance are less likely observed in well-trained and elite endurance-trained athletes (VO2max >65 mL/min/kg). It is also essential to follow the correct supplementation plan (acute/chronic use) to enhance exercise economy or performance, whereas the chronic use of DN brings more consistent results. Nevertheless, DN offer easily available, safe and efficient ergogenic aid for some athletes who seek to improve their performance.
  • 882
  • 17 Sep 2020
Topic Review
Triple Negative Breast Cancer
Triple-negative breast cancer (TNBC) is an aggressive breast type of cancer with no expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2). It is a highly metastasized, heterogeneous disease that accounts for 10–15% of total breast cancer cases with a poor prognosis and high relapse rate within five years after treatment compared to non-TNBC cases. 
  • 881
  • 11 Oct 2021
Topic Review
Decellularized Colorectal Cancer Matrices as Bioactive Scaffolds
More than a physical structure providing support to tissues, the extracellular matrix (ECM) is a complex and dynamic network of macromolecules that modulates the behavior of both cancer cells and associated stromal cells of the tumor microenvironment (TME). Over the last few years, several efforts have been made to develop new models that accurately mimic the interconnections within the TME and specifically the biomechanical and biomolecular complexity of the tumor ECM. Particularly in colorectal cancer, the ECM is highly remodeled and disorganized and constitutes a key component that affects cancer hallmarks, such as cell differentiation, proliferation, angiogenesis, invasion and metastasis. Therefore, several scaffolds produced from natural and/or synthetic polymers and ceramics have been used in 3D biomimetic strategies for colorectal cancer research. Nevertheless, decellularized ECM from colorectal tumors is a unique model that offers the maintenance of native ECM architecture and molecular composition.
  • 881
  • 18 Jan 2022
Topic Review
CD147
Microenvironment plays a crucial role in tumor development and progression. Cancer cells modulate the tumor microenvironment, which also contribute to resistance to therapy. Identifying biomarkers involved in tumorigenesis and cancer progression represents a great challenge for cancer diagnosis and therapeutic strategy development. CD147 is a glycoprotein involved in the regulation of the tumor microenvironment and cancer progression by several mechanisms—in particular, by the control of glycolysis and also by its well-known ability to induce proteinases leading to matrix degradation, tumor cell invasion, metastasis and angiogenesis. 
  • 881
  • 12 Aug 2021
Topic Review
Nanoplastic and the Gut-Brain Axis
The widespread usage of plastic places a significant burden on the environment and impacts numerous aquatic and terrestrial species. Humans in particular can be affected by plastic pollution, predominantly via inhalation and ingestion, as well as trophic transfer along the food chain. Under natural conditions synthetic materials undergo degradation into micro- and nanoparticles, especially prone to interact with biological systems. Organisms exposed to nanoplastic accumulate it in multiple tissues, including the gut and the brain. The scarce but consistent evidence shows that exposure to plastic nanoparticles can indeed affect both the digestive and the nervous system, therefore, potentially pose a threat to the complex network of mutual interactions between them, known as the gut-brain axis.
  • 881
  • 28 Mar 2022
Topic Review
Anticancer Drug-Induced Cardiotoxicity
The advancement in therapy has provided a dramatic improvement in the rate of recovery among cancer patients. However, this improved survival is also associated with enhanced risks for cardiovascular manifestations, including hypertension, arrhythmias, and heart failure. The cardiotoxicity induced by chemotherapy is a life-threatening consequence that restricts the use of several chemotherapy drugs in clinical practice. 
  • 881
  • 28 Sep 2021
Topic Review
Cell-Scaffold Constructs for Bone Regeneration Therapy
Bone tissue engineering (BTE) is a process of combining live osteoblast progenitors with a biocompatible scaffold to produce a biological substitute that can integrate into host bone tissue and recover its function. Mesenchymal stem cells (MSCs) are the most researched post-natal stem cells because they have self-renewal properties and a multi-differentiation capacity that can give rise to various cell lineages, including osteoblasts. BTE technology utilizes a combination of MSCs and biodegradable scaffold material, which provides a suitable environment for functional bone recovery and has been developed as a therapeutic approach to bone regeneration.
  • 880
  • 28 Oct 2021
Topic Review
Hepatic Vessel Skeletonization
Hepatic vessel skeletonization serves as an important means of hepatic vascular analysis and vessel segmentation. Skeletonization provides an effective and compact representation of an image object by reducing its dimensionality to a centerline while preserving the original topologic and geometric properties. Hepatic vascular analysis plays a critical role in the diagnosis and treatment of many liver diseases, classification of liver function regions and inquiry into the nature of vascular growth. Hepatic vessel skeletonization serves as an important means of hepatic vascular analysis, particularly because a hepatic vessel is a kind of thin tubular object satisfying the growth principle of Murray’s law.
  • 880
  • 15 Apr 2022
  • Page
  • of
  • 1352
Video Production Service