Topic Review
Lysosomes in Regulating Metabolism of Hematopoietic Stem Cells
Hematopoietic stem cells (HSCs) have the capacity to renew blood cells at all stages of life and are largely quiescent at a steady state. It is essential to understand the processes that govern quiescence in HSCs to enhance bone marrow transplantation. It is hypothesized that in their quiescent state, HSCs primarily use glycolysis for energy production rather than mitochondrial oxidative phosphorylation (OXPHOS). In addition, the HSC switch from quiescence to activation occurs along a continuous developmental path that is driven by metabolism. Specifying the metabolic regulation pathway of HSC quiescence will provide insights into HSC homeostasis for therapeutic application. Therefore, understanding the metabolic demands of HSCs at a steady state is key to developing innovative hematological therapeutics. Lysosomes are the major degradative organelle in eukaryotic cells. Catabolic, anabolic, and lysosomal function abnormalities are connected to an expanding list of diseases.
  • 462
  • 27 Dec 2022
Topic Review
Lysosomes in Maintaining Stem Cell Quiescence
Lysosomes are a critical component of the inner membrane system and are involved in various cellular biological processes, including macromolecular degradation, antigen presentation, intracellular pathogen destruction, plasma membrane repair, exosome release, cell adhesion/migration, and apoptosis. Lysosomes are a critical regulator of cellular metabolism, cancer, metastasis, and resistance to anticancer therapy. Additionally, lysosomal activities play a crucial role in acute myeloid leukemia (AML) development and progression, as well as maintaining the hematopoietic stem cells (HSCs) pool. It has been shown that AML cells undergo metabolic alterations due to chemotherapy or targeted treatment.
  • 615
  • 31 Mar 2022
Topic Review
Lysine-Specific Demethylase 2 in Cancers
Epigenetic mechanisms are known to play a key role in cancer progression. Specifically, histone methylation involves reversible post-translational modification of histones that govern chromatin structure remodelling, genomic imprinting, gene expression, DNA damage repair, and meiotic crossover recombination, among other chromatin-based activities. Demethylases are enzymes that catalyse the demethylation of their substrate using a flavin adenine dinucleotide-dependent amine oxidation process. Lysine-specific demethylase 1 (LSD1) and its homolog, lysine-specific demethylase 2 (LSD2), are overexpressed in a variety of human cancer types and, thus, regulate tumour progression. 
  • 373
  • 06 Apr 2022
Topic Review
Lysine-Specific Demethylase 1 in Cancers
Epigenetic mechanisms are known to play a key role in cancer progression. Specifically, histone methylation involves reversible post-translational modification of histones that govern chromatin structure remodelling, genomic imprinting, gene expression, DNA damage repair, and meiotic crossover recombination, among other chromatin-based activities. Demethylases are enzymes that catalyse the demethylation of their substrate using a flavin adenine dinucleotide-dependent amine oxidation process. Lysine-specific demethylase 1 (LSD1) and its homolog, lysine-specific demethylase 2 (LSD2), are overexpressed in a variety of human cancer types and, thus, regulate tumour progression.
  • 292
  • 06 Apr 2022
Topic Review
Lysine Acetylation, Emerging Onco-Therapeutic Opportunities
Acetylation, a reversible epigenetic process, is implicated in many critical cellular regulatory systems including transcriptional regulation, protein structure, activity, stability, and localization. Lysine acetylation is the most prevalent and intensively investigated among the diverse acetylation forms. 
  • 432
  • 17 Jan 2022
Topic Review
Lymphocytes in Brief
Lymphocytes are a vital class of white blood cells that serve as the backbone of the immune system. These small yet powerful cells play a pivotal role in defending the body against infections, viruses, and other foreign invaders. Lymphocytes come in two main types: B lymphocytes (B cells) and T lymphocytes (T cells), each with distinct functions. B cells are the architects of humoral immunity, producing antibodies that can recognize and neutralize specific pathogens. They originate in the bone marrow and mature there, eventually differentiating into plasma cells that churn out antibodies. T cells, on the other hand, are central to cell-mediated immunity, a critical defense mechanism against intracellular threats like viruses. They mature in the thymus gland and include helper T cells, cytotoxic T cells, regulatory T cells, and memory T cells, each with specialized roles. Lymphocytes undergo complex developmental processes, ensuring they can identify invaders while avoiding attacks on the body's own cells. Their functions span innate and adaptive immunity, making them essential for maintaining health and responding to diseases. From protecting against infections to enabling vaccination and driving cutting-edge cancer treatments, lymphocytes are indispensable to our well-being, and ongoing research promises to unlock even more of their potential.
  • 666
  • 07 Oct 2023
Topic Review
Lung Cancer Stem Cells
CSCs are small numbers of cells that exist in the tumor microenvironment (TME). Lung cancer TME is composed of a various group of non-cancer cells, such as tumor-associated macrophages (TAMs stromal cells), regulatory T cells (Tregs), tumor-infiltrating lymphocytes (TILs), dendritic cells (DCs), natural killer (NK) cells, natural killer T (NKT), myeloid-derived suppressor cells (MDSCs), along with cancer cells: mature cancer cells and CSCs. As yet, the complexity of the interactions between the cells in the immune TME has not been exhaustively described.
  • 558
  • 02 Jul 2021
Topic Review
LRRK2 and Lipid Pathways
Genetic alterations in the LRRK2 gene, encoding leucine-rich repeat kinase 2, are a common risk factor for Parkinson’s disease. How LRRK2 alterations lead to cell pathology is an area of ongoing investigation, multiple lines of evidence suggest a role for LRRK2 in lipid pathways. It is increasingly recognized that in addition to being energy reservoirs and structural entities, some lipids, including neural lipids, participate in signaling cascades. Early investigations revealed that LRRK2 localized to membranous and vesicular structures, suggesting an interaction of LRRK2 and lipids or lipid-associated proteins. LRRK2 substrates from the Rab GTPase family play a critical role in vesicle trafficking, lipid metabolism and lipid storage, all processes which rely on lipid dynamics. In addition, LRRK2 is associated with the phosphorylation and activity of enzymes that catabolize plasma membrane and lysosomal lipids. Furthermore, LRRK2 knockout studies have revealed that blood, brain and urine exhibit lipid level changes, including alterations to sterols, sphingolipids and phospholipids, respectively. In human LRRK2 mutation carriers, changes to sterols, sphingolipids, phospholipids, fatty acyls and glycerolipids are reported in multiple tissues.
  • 566
  • 19 Jan 2023
Topic Review
LPA 3 Promotes Mitochondrial Homeostasis against Oxidative Stress
Lysophosphatidic acid (LPA) is a growth factor-like lipid mediator that regulates various physiological functions via activation of multiple LPA G protein-coupled receptors. Mitochondria have been suggested to be the primary origin of oxidative stress via the overproduction of reactive oxygen species (ROS). Mitochondria are responsible for producing ATP through oxidative phosphorylation (OXPHOS) and have a calcium buffering capacity for the cell. Defects in mitochondria will lead to declined antioxidant capacity and cell apoptosis. siRNA-mediated depletion of LPA3 leads to the depolarization of mitochondrial potential (ΔΨm) and cellular ROS accumulation. In addition, the depletion of LPA3 enhances cisplatin-induced cytochrome C releasing. This indicates that LPA3 is essential to suppress the mitochondrial apoptosis pathway. LPA3 is also shown to improve mitochondrial ADP-ATP exchange by enhancing the protein level of ANT2. On the other hand, LPA3 regulates calcium uptake from the ER to mitochondria via the IP3R1-VDAC1 channel. Moreover, activation of LPA3 by selective agonist OMPT rescues mitochondrial homeostasis of H2O2-induced oxidative stress cells and HGPS patient fibroblasts by improving mitochondrial ΔΨm and OXPHOS. 
  • 488
  • 01 Apr 2022
Topic Review
Long Non-Coding RNAs in Gliomas
Glioma progression refers to the development and growth of glioma tumors in the brain. Glioma progression is a complex and multifactorial process involving various genetic, molecular, and cellular changes. The prognosis and survival rates for gliomas differ between adults and pediatrics. Overall, pediatric gliomas tend to have better prognoses compared to gliomas in adults. This is partly due to the prevalence of low-grade tumors in children, which generally have better outcomes than high-grade tumors such as glioblastoma. However, certain pediatric gliomas, such as DIPG, have particularly poor prognoses. The mechanism of glioma progression involves a complex interplay of genetic, molecular, cellular, and microenvironmental factors. Generally, glioma progression is driven by the accumulation of genetic mutations.
  • 320
  • 27 Jun 2023
  • Page
  • of
  • 161
ScholarVision Creations