Topic Review
Pericytes
Pericytes are increasingly recognized as being important in the control of blood–brain barrier permeability and vascular flow. Research on this important cell type has been hindered by widespread confusion regarding the phenotypic identity and nomenclature of pericytes and other perivascular cell types. In addition, pericyte heterogeneity and mouse–human species differences have contributed to confusion.
  • 556
  • 17 Jun 2021
Topic Review
ZEB1 in Cornea
ZEB1 is an important transcription factor for epithelial to mesenchymal transition (EMT) and in the regulation of cell differentiation and transformation. In the cornea, ZEB1 presents in all three layers: the epithelium, the stroma and the endothelium. Mutations of ZEB1 have been linked to multiple corneal genetic defects, particularly to the corneal dystrophies including keratoconus (KD), Fuchs endothelial corneal dystrophy (FECD), and posterior polymorphous corneal dystrophy (PPCD).
  • 556
  • 22 Apr 2021
Topic Review
Secretory Autophagy Forges Therapy Resistant Microenvironment in Melanoma
Tumor microenvironment (TME) is a complex of many cell types and extracellular matrix that play an active role in regulating and sustaining melanoma tumor progression. The secretion of several molecules, by secretory autophagy or exosome release, stimulates the intercellular communication between the different components of the TME modulating tumor response.
  • 555
  • 15 Feb 2022
Topic Review
Extracellular Vesicles(EVs)
Extracellular vesicles (EVs), comprising large microvesicles (MVs) and exosomes (EXs), play a key role in intercellular communication, both in physiological and in a wide variety of pathological conditions. However, the education of EV target cells has so far mainly been investigated as a function of EX cargo, while few studies have focused on the characterization of EV surface membrane molecules and the mechanisms that mediate the addressability of specific EVs to different cell types and tissues. Identifying these mechanisms will help fulfill the diagnostic, prognostic, and therapeutic promises fueled by our growing knowledge of EVs.
  • 555
  • 13 Jul 2021
Topic Review
Contribution of Lactate Metabolism in Cancer Progress
The Warburg effect describes a unique phenomenon that cancers incline to shift the mode of oxidative phosphorylation (OXPHOS) to glycolysis in spite of abundant oxygen. Lactate is the main production of glycolysis, which contains two isomers, L-lactate and D-lactate. The accumulation of high lactate in solid tumors and its extracellular environment is considered as the key and early evidence of malignant development, which is associated with a poor prognosis. Lactate reprograms the tumor microenvironment (TME) to have profound effects on cancer cell phenotype and is conducive to the progress of cancer that involves the eight biological capabilities acquired of cancer: sustaining cell proliferation, promoting growth, resisting cell death, enabling replicative immortality, inducing angiogenesis, activating invasion and metastasis, reprogramming energy metabolism, and evading immune destruction. Lactate’s contribution to cancer is not only the respiratory fuel but also the regulator of intracellular and extracellular molecular signaling in the TME.
  • 555
  • 11 Jan 2023
Topic Review
Targeting Tie2 in the Tumor Microenvironment
The dissemination of cancer cells from their original location to distant organs where they grow, a process called metastasis, causes more than 90% of cancer deaths. The identification of the molecular mechanisms of metastasis and the development of anti-metastatic therapies are essential to increase patient survival. In recent years, targeting the tumor microenvironment has become a promising avenue to prevent both tumor growth and metastasis. As the tumor microenvironment contains not only cancer cells but also blood vessels, immune cells, and other non-cancerous cells, it is naïve to think that therapy only affects a single cell type in this complex environment. Here to stress the importance, and ways to inhibit the function, of one therapeutic target: the receptor Tie2. Tie2 is a receptor present on the cell surface of several cell types within the tumor microenvironment and regulates tumor angiogenesis, growth, and metastasis to distant organs.
  • 555
  • 06 Dec 2021
Topic Review
Ferroptosis in NAFLD
Non-alcoholic fatty liver disease (NAFLD) is a chronic progressive liver disease with steatosis as the main pathological feature, including simple fatty liver degeneration, non-alcoholic steatohepatitis (NASH). It may develop into cirrhosis and liver cancer. NAFLD is the most common chronic liver disease in the world today, and its incidence in the Euro-American region has reached more than 20%.
  • 555
  • 20 Dec 2021
Topic Review
Mathematical Models of Apoptosis
Apoptosis is one of the most well-studied and characterized programmed cell death mechanisms. The detailed characterization of molecular interactions involved in apoptosis, and the growing amount of related quantitative data, has encouraged computational and systems biologists to develop mathematical models of apoptosis.
  • 554
  • 20 Oct 2022
Topic Review
Breast carcinoma eukaryotic initiation factors
Breast cancer is the most frequent neoplasm in females. It is a heterogenous entity, classified into intrinsic subtypes based on gene expression data and in corresponding clinical subtypes based on the determination of hormone receptor expression and proliferative activity estimated from ki67 by immunohistochemistry. As for other tumors, the metabolism of breast tumors depends on aerobic glycolysis ("Warburg-effect") and the capability for effective biosynthesis of proteins. Quantity and quality of protein biosynthesis is mainly controlled in the initiation phase of translation, which is characterized by a complex interaction of eucaryotic initiation factors with the mRNA and ribosomal proteins to form a translationally active ribosome. Thus the eIF subunit composition varies from cancer to cancer and is a key factor for determining the cancer cell´s proteome. eIFs can therefore become a suitable anti-cancer drug target. We here summarize the current knowledge on eIF expression and prognostic impact in breast cancer.
  • 553
  • 11 Aug 2020
Topic Review
Diet in Stem and Cancer Stem Cells
Diet and lifestyle factors greatly affect health and susceptibility to diseases, including cancer. Stem cells’ functions, including their ability to divide asymmetrically, set the rules for tissue homeostasis, contribute to health maintenance, and represent the entry point of cancer occurrence. Stem cell properties result from the complex integration of intrinsic, extrinsic, and systemic factors. In this context, diet-induced metabolic changes can have a profound impact on stem cell fate determination, lineage specification and differentiation.
  • 553
  • 01 Aug 2022
  • Page
  • of
  • 161
ScholarVision Creations