Topic Review
Heterochromatin and Nuclear Phenotypes of T. infestans
Triatoma infestans (Klug), the most important vector of Chagas disease, is a hemipteran insect belonging to the Triatominae subfamily of the Reduviidae family and one of the 84 species of the Triatomini tribe.
  • 261
  • 07 Oct 2023
Topic Review
Heterochromatin Networks
Recent data point to the leading role of heterochromatin in genome maintenance, highlighting the attractions between heterochromatic regions as being central to phase separation of the active and inactive chromatin domains. The three main properties of heterochromatin—the position silencing effect on transcription, stickiness, and flexible rigidity are important for its network formation.
  • 731
  • 07 Jul 2021
Topic Review
Heterogeneity of Colorectal Cancer Liver Metastasis
Colorectal cancer (CRC) is a disease with a high incidence and mortality rate. The number of new CRC cases worldwide reached 1.93 million in 2020, ranking third after breast cancer and lung cancer. The number of CRC-related deaths reached 940,000, making it the second most deadly tumor globally. In China, according to the 2016 national cancer statistics published by the National Cancer Center, a total of 4.06 million tumor patients were diagnosed in 2016, with approximately 408,000 being CRC patients. Among these cases, approximately 196,000 CRC patients died, accounting for 8.10% of the total.
  • 177
  • 05 Jan 2024
Topic Review
HFpEF
Heart failure (HF) with preserved left ventricular ejection fraction (HFpEF) is becoming the predominant form of HF. However, medical therapy that improves cardiovascular outcome in HF patients with almost normal and normal systolic left ventricular function, but diastolic dysfunction is missing. The cause of this unmet need is incomplete understanding of HFpEF pathophysiology, the heterogeneity of the patient population, and poor matching of therapeutic mechanisms and primary pathophysiological processes.
  • 564
  • 11 Mar 2022
Topic Review
HGPS and Cardiovascular Disease
Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disease that recapitulates many symptoms of physiological aging and precipitates death. Patients develop severe vascular alterations, mainly massive vascular smooth muscle cell loss, vessel stiffening, calcification, fibrosis, and generalized atherosclerosis, as well as electrical, structural, and functional anomalies in the heart. As a result, most HGPS patients die of myocardial infarction, heart failure, or stroke typically during the first or second decade of life. No cure exists for HGPS, and therefore it is of the utmost importance to define the mechanisms that control disease progression in order to develop new treatments to improve the life quality of patients and extend their lifespan. Since the discovery of the HGPS-causing mutation, several animal models have been generated to study multiple aspects of the syndrome and to analyze the contribution of different cell types to the acquisition of the HGPS-associated cardiovascular phenotype.
  • 843
  • 22 Sep 2021
Topic Review
High Mobility Group Box 1
The High Mobility Group Box 1 (HMGB1) is the most abundant nuclear nonhistone protein that is involved in transcription regulation. In addition, HMGB1 has previously been found as an extracellularly acting protein enhancing neurite outgrowth in cultured neurons. Although HMGB1 is widely expressed in the developing central nervous system of vertebrates and invertebrates, its function in the developing mouse brain is poorly understood. Here, we have analyzed developmental defects of the HMGB1 null mouse forebrain, and further examined our findings in ex vivo brain cell cultures. We find that HMGB1 is required for the proliferation and differentiation of neuronal stem cells/progenitor cells. Enhanced apoptosis is also found in the neuronal cells lacking HMGB1. Moreover, HMGB1 depletion disrupts Wnt/β-catenin signaling and the expression of transcription factors in the developing cortex, including Foxg1, Tbr2, Emx2, and Lhx6. Finally, HMGB1 null mice display aberrant expression of CXCL12/CXCR4 and reduced RAGE signaling. In conclusion, HMGB1 plays a critical role in mammalian neurogenesis and brain development.
  • 681
  • 27 Oct 2020
Topic Review
High-Throughput Screening Methods for Radiosensitivity and Resistance
The biological impact of ionizing radiation (IR) on humans depends not only on the physical properties and absorbed dose of radiation but also on the unique susceptibility of the exposed individual. A critical target of IR is DNA, and the DNA damage response is a safeguard mechanism for maintaining genomic integrity in response to the induced cellular stress. Unrepaired DNA lesions lead to various mutations, contributing to adverse health effects.
  • 457
  • 19 Aug 2022
Topic Review
Hippo in Gastric Cancer
The Hippo signalling pathway is one of the most crucial and complex ones in physiology, and there is no doubt that the regulatory mechanisms it possesses are various. The role of this signalisation process in tissue homeostasis makes it keen to lead to cancerous processes when dysregulated. 
  • 819
  • 16 May 2022
Topic Review
Hippo Pathway in Cancer
The Hippo pathway regulatory network is complex and diverse, and its regulatory mechanism is still poorly understood. A key challenge for the future will be to explore the mechanisms by which the Hippo signaling pathway plays regulatory roles in different environments, and to develop targeted cancer treatments. We believe that targeting the Hippo pathway will lead to fruitful therapies in the near future.
  • 658
  • 28 Jun 2021
Topic Review
Hippo Pathway in Glioblastoma
Glioblastoma (GBM) represents the most common and malignant tumor of the Central Nervous System (CNS), affecting both children and adults. GBM is one of the deadliest tumor types and it shows a strong multidrug resistance (MDR) and an immunosuppressive microenvironment which remain a great challenge to therapy.
  • 541
  • 11 Jan 2022
  • Page
  • of
  • 161
Video Production Service