Topic Review
Pericyte Loss in Diseases
Pericytes are specialized cells located in close proximity to endothelial cells within the microvasculature. They play a crucial role in regulating blood flow, stabilizing vessel walls, and maintaining the integrity of the blood–brain barrier. The loss of pericytes has been associated with the development and progression of various diseases, such as diabetes, Alzheimer’s disease, sepsis, stroke, and traumatic brain injury. 
  • 235
  • 10 Aug 2023
Topic Review
Peptide-Assisted Nucleic Acid Delivery Systems
Advances in peptide development have made peptide-assisted gene delivery more efficient in vitro and, in some instances, in small animal models. For example, cell and tissue selectivity could be greatly enhanced in the newest generation of CPPs. Other advances which allow for improved performance with regard to targeting and delivery of nucleic acids include adapting peptide sequences to facilitate escape or release from intracellular vesicles or respond to environmental stimuli for a controlled release of cargo, and the development of composite, multivalent peptide-based, or peptide-coupled structures.
  • 538
  • 08 Sep 2021
Topic Review
Pectin and Gal-3
Galectin-3 is the only chimeric representative of the galectin family. Although galectin-3 has ubiquitous regulatory and physiological effects, there is a great number of pathological environments where galectin-3 cooperatively participates. Pectin is composed of different chemical structures, such as homogalacturonans, rhamnogalacturonans, and side chains.
  • 1.4K
  • 28 Feb 2022
Topic Review
PE_PGRS33 and humoral immune response
PE_PGRS proteins are surface antigens of Mycobacterium tuberculosis (Mtb) and a few other pathogenic mycobacteria. The PE_PGRS33 protein is among the most studied PE_PGRSs. It is known that the PE domain of PE_PGRS33 is required for the protein translocation through the mycobacterial cell wall, where the PGRS domain remains available for interaction with host receptors. Interaction with Toll like receptor 2 (TLR2) promotes secretion of inflammatory chemokines and cytokines, which are key in the immunopathogenesis of tuberculosis (TB). Here, we address key challenges in the development of a TB vaccine and attempt to provide a rationale for the development of new vaccines aimed at fostering a humoral response against Mtb. We show that the PGRS domain of PE_PGRS33 exposes four PGII sandwiches on the outer surface, which we propose to be directly involved through their loops in the interactions with the host receptors and as such are promising targets for a vaccination strategy aimed at inducing a humoral response. 
  • 459
  • 27 Jan 2021
Topic Review
PDE2A for Mouse Liver Development
cAMP and cGMP are intracellular signaling molecules produced in response to a plethora of extracellular signals in order to coordinate cellular metabolism, proliferation, differentiation and apoptosis. Phosphodiesterases (PDEs) are the enzymes that hydrolyze cAMP and cGMP in order to end or to limit the responses to these signals. To date 11 PDE families (named PDE1 to PDE11) have been identified across each cell type expressed in a peculiar pattern. They enclose 21 genes that codify approximately 100 enzymes that form a redundant network ensuring the compensation of activity in case of alteration of activity or lack of expression of one of the members. PDE2A, a cAMP-hydrolyzing enzyme, represents the exception to this picture, as PDE2A knockout is embryonic lethal. Knockout embryos show that the lack of the enzyme has the greatest impact on the development of the heart and of the liver, which is no longer able to assume its hematopoietic role. The increase of the intracellular cAMP level and the downregulation of the anti-apoptotic gene Bcl2 might explain the loss of integrity in the PDE2A knockout liver niche that compromises the hematopoietic function and maturation.
  • 752
  • 29 Oct 2020
Topic Review
PBK/TOPK: A Therapeutic Target
T-lymphokine-activated killer cell-originated protein kinase (TOPK), also known as PDZ-binding kinase (PBK), was a member of the MEK3/6-related MAPKK family. As a mitotic serine/threonine protein kinase, accumulating evidence supported its role in mitosis and cell-cycle progression of mitotically active cells, especially proliferative malignant cells. PBK/TOPK was confirmed to be associated with the development, progression, and metastasis of malignancies, which made it a potential therapeutic target in cancer therapy. Further, it was also demonstrated to play crucial roles in ischemic injury and involve in protection against ischemia. This protective effect of PBK/TOPK in the context of ischemia challeged the development of PBK/TOPK inhibitors in anti-tumor therapy, and more research was required to further explore its role and underlying mechanisms to translate its application to clinical studies.  
  • 620
  • 19 Mar 2021
Topic Review
Patient-Derived Preclinical Prostate Cancer Models
To understand the molecular mechanisms of cancer progression, acquired drug resistance, and the metastatic process, the use of preclinical in vitro models that faithfully summarize the properties of the tumor in patients is still a necessity. The tumor is represented by a diverse group of cell clones, and to reproduce in vitro preclinical tumor models, monolayer cell cultures have been supplanted by patient-derived xenograft (PDX) models and cultured organoids derived from the patient (PDO). These models have proved indispensable for the study of the tumor microenvironment (TME) and its interaction with tumor cells. 
  • 202
  • 27 Nov 2023
Topic Review
Pathophysiology of Nitrergic Enteric Neurons
Nitrergic enteric neurons are key players of the descending inhibitory reflex of intestinal peristalsis, therefore loss or damage of these neurons can contribute to developing gastrointestinal motility disturbances suffered by patients worldwide. There is accumulating evidence that the vulnerability of nitrergic enteric neurons to neuropathy is strictly region-specific and that the two main enteric plexuses display different nitrergic neuronal damage. Alterations both in the proportion of the nitrergic subpopulation and in the total number of enteric neurons suggest that modification of the neurochemical character or neuronal death occurs in the investigated gut segments. 
  • 532
  • 23 Jun 2021
Topic Review
Pathophysiology of Inflammatory Bowel Disease
Inflammatory bowel disease (IBD) encompasses a group of heterogeneous diseases that entail chronic, relapsing gastrointestinal tract inflammation of inexactly known etiology and pathogenesis. IBD is clinically classified as Crohn’s disease (CD) or ulcerative colitis (UC) based on symptoms, disease location, and histopathological characteristics.
  • 869
  • 28 Jan 2023
Topic Review
Pathophysiology of Acute Myeloid Leukemia
Acute myeloid leukemia is a cancerous condition that affects hemopoietic stem cells or progenitors and is defined by the stopping of myeloid lineage development and abnormal proliferation.
  • 1.3K
  • 30 Mar 2023
  • Page
  • of
  • 161
ScholarVision Creations