Topic Review
Three-Dimensional Cell Cultures
Cell cultures are very important for testing materials and drugs, and in the examination of cell biology and special cell mechanisms. The most popular models of cell culture are two-dimensional (2D) as monolayers, but this does not mimic the natural cell environment. Cells are mostly deprived of cell–cell and cell–extracellular matrix interactions. A much better in vitro model is three-dimensional (3D) culture. Because many cell lines have the ability to self-assemble, one 3D culturing method is to produce spheroids. There are several systems for culturing cells in spheroids, e.g., hanging drop, scaffolds and hydrogels, and these cultures have their applications in drug and nanoparticles testing, and disease modeling.
  • 670
  • 27 Oct 2020
Topic Review
Alternative Splicing in Cancer and Immune Cells
Splicing is a phenomenon enabling the excision of introns from pre-mRNA to give rise to mature mRNA. All the 20,000 genes of the human genome are concerned by this mechanism. Nevertheless, it is estimated that the proteome is composed of more than 100,000 proteins. How to go from 20,000 genes to more than 100,000 proteins? Alternative splicing (AS) is in charge of this diversity of proteins. AS which is found in most of the cells of an organism, participates in normal cells and in particular in immune cells, in the regulation of cellular behavior. In cancer, AS is highly dysregulated and involved in almost all of the hallmarks that characterize tumor cells.
  • 669
  • 06 Apr 2022
Topic Review
The Golgi Associated Retrograde Protein Complex
The Golgi associated retrograde protein complex (GARP) is an evolutionarily conserved component of Golgi membrane trafficking machinery that belongs to the Complexes Associated with Tethering Containing Helical Rods (CATCHR) family.
  • 669
  • 31 Mar 2023
Topic Review
Mechanisms of Reticulocyte Maturation
Reticulocyte maturation begins after enucleation in the bone marrow. In rats, reticulocytes reside in the bone marrow from 6.5–17 hrs depending on the blood demand. These reticulocytes are termed as R1 and are characterized for their multi-lobular shape and their motility. The final stages of maturation occur during circulation where macrophages residing in the spleen may facilitate the process. These reticulocytes in circulation are termed as R2, are non-motile and have a “deep-dish” shape”. As part of their maturation, reticulocytes need to remove or degrade residual organelles and RNA. In addition, the reticulocyte must reduce its surface area and volume. On average, labelled baboon reticulocytes showed a reduction of 20% of their surface area and 15% of their volume after the first 24 h in circulation; at this point they showed a similar size distribution to that of mature RBC.
  • 669
  • 29 Mar 2022
Topic Review
Cofilin Signaling
Three ADF/cofilin family members are expressed in mammals: ADF, cofilin-1, and cofilin-2. The first member ADF (also known as destrin), encoded by the gene DSTN in humans, was initially identified in the chick brain. Cofilin was discovered as an actin-interacting protein in the porcine brain. Later, Ono et al. identified two mammalian variants of cofilin, non-muscle type (also known as cofilin-1 and n-cofilin) and muscle type (also known as cofilin-2 and m-cofilin). In humans, cofilin-1 and cofilin-2 are encoded by the genes CFL1 and CFL2, respectively. Different isoforms of ADF/cofilin have qualitatively similar but quantitatively different effects on actin dynamics. To be noted, both ADF and cofilin show cooperative binding with actin filaments. Interestingly, cofilin-1 comprises almost 90% of the total ADF/cofilin family in CNS. Cofilin can bind to both G-actin and F-actin, exhibiting stronger affinities for the ADP-bound actins than the ATP- or ADP-Pi-bound forms. Cofilin binding to F-actin induces actin subunit rotation, enhances Pi release along the filament, and promotes filament severing in a concentration-dependent manner.
  • 669
  • 28 Oct 2021
Topic Review
Enteric Glial Cells
 At first, enteric glial cells were considered to be just a structural support for neurons, but recent findings emphasized more on their functions, and they turned out to be equally as important as neural cells, due to their involvement in all aspects of neural functions for both the central and peripheral nervous system, including the ENS.They have been mostly underestimated, particularly regarding the modulation of their functions by nutraceuticals.
  • 669
  • 09 Nov 2021
Topic Review
Natural Killer Cell-Derived Extracellular Vesicles for Cancer
Cancer is the second leading contributor to global deaths caused by non-communicable diseases. The cancer cells are known to interact with the surrounding non-cancerous cells, including the immune cells and stromal cells, within the tumor microenvironment (TME) to modulate the tumor progression, metastasis and resistance. Chemotherapy and radiotherapy are the standard treatments for cancers. A new generation of immunotherapy using natural killer (NK) cells, cytotoxic CD8+ T-lymphocytes or macrophages was developed to achieve tumor-specific targeting and circumvent the adverse effects.
  • 668
  • 21 Feb 2023
Topic Review
The Interplay between Calcium and Reactive Oxygen Species
Mitochondria are key players in energy production, critical activity for the smooth functioning of energy-demanding organs such as the muscles, brain, and heart. Therefore, dysregulation or alterations in mitochondrial bioenergetics primarily perturb these organs. Within the cell, mitochondria are the major site of reactive oxygen species (ROS) production through the activity of different enzymes since it is one of the organelles with the major availability of oxygen.
  • 668
  • 16 Feb 2023
Topic Review
Mechanosensitive Ion Channels
Mechanosensitive ion channels mediate the neuronal sensation of mechanical signals such as sound, touch, and pain.
  • 667
  • 21 Oct 2021
Topic Review
Extracellular Vesicles in Epigenetic Regulation
Extracellular vesicles (EVs) are complex phospholipidic structures actively released by cells. EVs are recognized as powerful means of intercellular communication since they contain many signaling molecules (including lipids, proteins, and nucleic acids).
  • 666
  • 14 Dec 2020
  • Page
  • of
  • 161
ScholarVision Creations