Topic Review
Neutrophil in Pancreatic Tumor Microenvironment
Pancreatic ductal adenocarcinoma (PDAC) is a malignancy with a poor prognosis and low survival rates. PDAC is characterized by a fibroinflammatory tumor microenvironment enriched by abundant fibroblasts and a variety of immune cells, contributing to its aggressiveness. Neutrophils are essential infiltrating immune cells in the PDAC microenvironment. Recent studies have identified several cellular mechanisms by which neutrophils are recruited to tumor lesions and promote tumorigenesis. 
  • 704
  • 29 Mar 2022
Topic Review
Endoplasmic Reticulum Stress Sensor IRE1α
Inositol-requiring transmembrane kinase endoribonuclease-1α (IRE1α) is the most prominent and evolutionarily conserved unfolded protein response (UPR) signal transducer during endoplasmic reticulum functional upset (ER stress). A IRE1α signal pathway arbitrates yin and yang of cellular fate in objectionable conditions. It plays several roles in fundamental cellular physiology as well as in several pathological conditions such as diabetes, obesity, inflammation, cancer, neurodegeneration, and in many other diseases.
  • 702
  • 29 Oct 2020
Topic Review
Tumor Cells and Cancer-Associated Fibroblasts
Metabolism is considered to be the core of all cellular activity. Thus, extensive studies of metabolic processes are ongoing in various fields of biology, including cancer research. Cancer cells are known to adapt their metabolism to sustain high proliferation rates and survive in unfavorable environments with low oxygen and nutrient concentrations. Hence, targeting cancer cell metabolism is a promising therapeutic strategy in cancer research. However, cancers consist not only of genetically altered tumor cells but are interwoven with endothelial cells, immune cells and fibroblasts, which together with the extracellular matrix (ECM) constitute the tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs), which are linked to poor prognosis in different cancer types, are one important component of the TME. CAFs play a significant role in reprogramming the metabolic landscape of tumor cells, but how, and in what manner, this interaction takes place remains rather unclear.
  • 701
  • 04 Mar 2021
Topic Review
NKG2D Natural Killer Cell Receptor
The functionality of NK cells is preserved by the set of activating and inhibitory receptors. Under normal conditions, the appropriate level of major histocompatibility complex (MHC) class I molecules is supervised by inhibitory receptors, which keep NK cells silenced. The “missing self” mechanism considers reduced levels of MHC I (Ia and Ib) molecules when NK cells become activated.
  • 700
  • 02 Jul 2021
Topic Review
Autophagy in Chronic Heart Failure
Autophagy is a conserved cell quality control system, and increasing evidence suggests that it plays an important role in numerous and different biological processes, such as starvation, aging, inflammation, and organ remodeling, by maintaining cellular homeostasis.
  • 699
  • 14 Apr 2021
Topic Review
TRPC Channels
Transient receptor potential canonical (TRPC) channels are ubiquitously expressed in excitable and non-excitable cardiac cells where they sense and respond to a wide variety of physical and chemical stimuli. As other TRP channels, TRPC channels may form homo or heterotetrameric ion channels, and they can associate with other membrane receptors and ion channels to regulate intracellular calcium concentration. Dysfunctions of TRPC channels are involved in many types of cardiovascular diseases. Significant increase in the expression of different TRPC isoforms was observed in different animal models of heart infarcts and in vitro experimental models of ischemia and reperfusion. TRPC channel-mediated increase of the intracellular Ca2+ concentration seems to be required for the activation of the signaling pathway that plays minor roles in the healthy heart, but they are more relevant for cardiac responses to ischemia, such as the activation of different factors of transcription and cardiac hypertrophy, fibrosis, and angiogenesis.
  • 698
  • 26 May 2021
Topic Review
Physiological Role of Mitogen-Activated Protein Kinase in Eye
Mitogen-activated protein kinase (MAPK) pathways represent ubiquitous cellular signal transduction pathways that regulate all aspects of life (such as development of eye) and are frequently altered in disease. Once activated through phosphorylation, these MAPKs in turn phosphorylate and activate transcription factors present either in the cytoplasm or in the nucleus, leading to the expression of target genes and, as a consequence, they elicit various biological responses. 
  • 698
  • 08 Mar 2023
Topic Review
LOCs/OOCs for Biomedical Applications
Lab-on-a-chip (LOC) and organ-on-a-chip (OOC) devices are highly versatile platforms that enable miniaturization and advanced controlled laboratory functions (i.e., microfluidics, advanced optical or electrical recordings, high-throughput screening). The manufacturing advancements of LOCs/OOCs for biomedical applications and their current limitations are briefly discussed. Multiple studies have exploited the advantages of mimicking organs or tissues on a chip. Among these, we focused our attention on the brain-on-a-chip, blood–brain barrier (BBB)-on-a-chip, and neurovascular unit (NVU)-on-a-chip applications.
  • 697
  • 14 Jul 2021
Topic Review
Mesenchymal Cells for RP Therapy
Retinitis pigmentosa (RP) is a complex inherited retinal dystrophy currently lacking effective therapies: this represents one of the greatest challenges in the field of ophthalmological research. Stem cells, especially mesenchymal cells represents a feasible therapeutic option in RP, limitating both oxidative stress and apoptotic processes triggered by the disease and promoting cell survival. 
  • 697
  • 26 Oct 2020
Topic Review
Structural Glial–Neuronal Mechanisms of Mitochondrial Transfer
Glial–neuronal mitochondrial transfer is mediated via a number of active processes including the release of extracellular vesicles, the formation of tunnelling nanotubes, and potentially other mechanisms.
  • 696
  • 07 Dec 2022
  • Page
  • of
  • 161
ScholarVision Creations