Topic Review
Ceramide Synthase 2 in Bladder Cancer
The human CERS2 gene encodes a ceramide synthase enzyme, known as CERS2 (ceramide synthase 2). This protein is also known as LASS2 (LAG1 longevity assurance homolog 2) and TMSG1 (tumor metastasis-suppressor gene 1). Bladder cancer (BC) is a significant cause of cancer-related deaths globally, ranking as the second-most-common reason for genitourinary cancer-related mortality. The treatment of non-muscle invasive bladder cancer includes transurethral resection followed by chemotherapy to reduce recurrence chances, while muscle-invasive bladder cancers are associated with high rates of progression and metastasis and are usually treated via radical cystectomy if the tumor is organ-confined.
  • 269
  • 31 Oct 2023
Topic Review
Cerebral Asymmetry
Human functions and traits are linked to cerebral networks serving different emotional and cognitive control systems, some of which rely on hemispheric specialization and integration to promote adaptive goal-directed behavior. Among the neural systems discussed in this context are those underlying pro- and antisocial behaviors. The diverse functions and traits governing our social behavior have been associated with lateralized neural activity. However, as with other complex behaviors, specific hemispheric roles are difficult to elucidate. This is due largely to environmental and contextual influences, which interact with neural substrates in the development and expression of pro and antisocial functions. This paper will discuss the reciprocal ties between environmental factors and hemispheric functioning in the context of antisocial behavior. The paper will attempt to familiarize readers with the prominent literature and primary questions to encourage further research and in-depth discussion in this field.
  • 1.2K
  • 22 Oct 2020
Topic Review
Cerebral Cavernous Malformations (CCM)
Cerebral cavernous malformations (CCMs): an overall view from genes to endothelial cells.
  • 323
  • 21 Apr 2021
Topic Review
CfDNA, Sport Adaptation Predictor
Changes of circulating free plasma DNA (cfDNA) are associated with different types of tissue injury, including those induced by intensive aerobic and anaerobic exercises. Observed changes are dependent from induced inflammation, and thus it may be a potential marker for athletic overtraining. 
  • 462
  • 26 Aug 2021
Topic Review
CFTR Lifecycle Map
Cystic Fibrosis (CF) is one of the most common genetic diseases prevalent among the Caucasian population and is caused by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. To date, several hundred disease-causing mutations are known, resulting in a vast range of geno- and phenotypes, which makes the development of therapeutics especially challenging. To support the development of novel therapeutics, systems biological disease maps can be used. Disease maps represent existing knowledge on disease mechanisms in a computationally readable and comprehensive manner so they can then be used by clinicians and experimental scientists as well as computational scientists for different purposes, such as structuring high-throughput data, identifying disease biomarkers, developing better diagnostics and also identifying potential drug targets and drug repositioning. The CFTR Lifecycle Map in particular details the biogenesis of CFTR in cells to support ongoing drug discovery endeavours in CF research.
  • 458
  • 22 Nov 2021
Topic Review
cGAS–Sting Signaling in Alzheimer’s Disease
There is mounting evidence that the development of Alzheimer’s disease (AD) interacts extensively with immunological processes in the brain and extends beyond the neuronal compartment. Accumulation of misfolded proteins can activate an innate immune response that releases inflammatory mediators and increases the severity and course of the disease. It is widely known that type-I interferon-driven neuroinflammation in the central nervous system (CNS) accelerates the development of numerous acute and chronic CNS diseases. It is becoming better understood how the cyclic GMP–AMP synthase (cGAS) and its adaptor protein Stimulator of Interferon Genes (STING) triggers type-I IFN-mediated neuroinflammation.
  • 539
  • 10 May 2023
Topic Review
CGF Biomolecules
Concentrated Growth Factors (CGF) represent new autologous (blood-derived biomaterial), attracting growing interest in the field of regenerative medicine. 
  • 251
  • 24 Jan 2022
Topic Review
Changes in Homeostasis of the Dermal Extracellular Matrix
Skin aging is a multi-factorial process that affects nearly every aspect of skin biology and function. With age, an impairment of structures, quality characteristics, and functions of the dermal extracellular matrix (ECM) occurs in the skin, which leads to disrupted functioning of dermal fibroblasts (DFs), the main cells supporting morphofunctional organization of the skin. The DF functioning directly depends on the state of the surrounding collagen matrix (CM). The intact collagen matrix ensures proper adhesion and mechanical tension in DFs, which allows these cells to maintain collagen homeostasis while ECM correctly regulates cellular processes. When the integrity of CM is destroyed, mechanotransduction is disrupted, which is accompanied by impairment of DF functioning and destruction of collagen homeostasis, thereby contributing to the progression of aging processes in skin tissues. 
  • 703
  • 21 Jun 2022
Topic Review
Chaperone-Mediated Autophagy in Neurodegenerative Diseases
Chaperone-mediated autophagy (CMA) is a protein degradation mechanism through lysosomes. By targeting the KFERQ motif of the substrate, CMA is responsible for the degradation of about 30% of cytosolic proteins, including a series of proteins associated with neurodegenerative diseases (NDs). The fact that decreased activity of CMA is observed in NDs, and ND-associated mutant proteins, including alpha-synuclein and Tau, directly impair CMA activity reveals a possible vicious cycle of CMA impairment and pathogenic protein accumulation in ND development. Given the intrinsic connection between CMA dysfunction and ND, enhancement of CMA has been regarded as a strategy to counteract ND. Indeed, genetic and pharmacological approaches to modulate CMA have been shown to promote the degradation of ND-associated proteins and alleviate ND phenotypes in multiple ND models.
  • 377
  • 01 Aug 2022
Topic Review
Chaperone-Mediated Autophagy in Peritumoral Pericyte during Glioblastoma Multiforme
Glioblastoma multiforme (GB) is an aggressive cancer with poor prognosis as it is one of the most difficult cancers to treat. Glioblastoma (GB) cells physically interact with peritumoral pericytes (PCs) present in the brain microvasculature. These interactions facilitate tumor cells to aberrantly increase and benefit from chaperone-mediated autophagy (CMA) in the PC. GB-induced CMA leads to major changes in PC immunomodulatory phenotypes, which, in turn, support cancer progression. 
  • 348
  • 18 Sep 2023
  • Page
  • of
  • 161
Video Production Service