Topic Review
Cellular Senescence in Metabolic-Associated Kidney Disease
Metabolic syndrome (MetS), a complex of interrelated risk factors for cardiovascular disease and diabetes, is characterized by central obesity (increased waist circumference), hyperglycemia, dyslipidemia (high triglyceride blood levels and low high-density lipoprotein blood levels), and increased blood pressure. As an important metabolic organ, the kidney has a close relationship with metabolic syndrome. MetS usually aggravates kidney damage and causes or aggravates kidney pathologies, typically manifested as microalbuminuria and renal insufficiency. For example, severe obesity can lead to glomerular hypertrophy and glomerular sclerosis, leading to proteinuria. This is called obesity-related nephropathy, which was first discovered in 1974 by Weisinger. Diabetic capillary complications can lead to pathological changes to the kidney, thickening of the glomerular capillary basement membrane, and widening of the mesangium. Clinical manifestations can change from proteinuria to uremia. Similarly, hypertension-related nephropathy is a serious complication of hypertension, which is characterized by arteriosclerotic kidneys. Clinical manifestations include nocturia increasing, albuminuria, and finally, uremia. For hyperlipidemia, although there is no hyperlipidemia-related nephropathy, a large number of studies have shown that lipids have an effect on the proliferation and signal transduction of glomerular cells, and accelerate glomerulosclerosis through inflammatory reaction. These metabolic diseases often exist at the same time, and can promote each other; furthermore, they share a common pathophysiological basis: insulin resistance. It is widely believed that there exists a significant relationship between hyperglycemia, hypertension, and hyperlipemia.
  • 413
  • 18 Nov 2022
Topic Review
Cellular Senescence in Lung Fibrosis
Cellular senescence, one of the hallmarks of aging, is defined as a cellular state of irreversibly arrested proliferation of aged or damaged cells.
  • 548
  • 09 Jul 2021
Topic Review
Cellular Senescence in Hepatocellular Carcinoma
Cellular senescence is regarded as a fail-safe program, leading to double-sword effects of both cell growth inhibition and tissue repair promotion. Particularly, cellular senescence serves a pivotal role in the progression of chronic inflammatory liver diseases, ultimately leading to carcinogenesis. 
  • 680
  • 11 Jan 2023
Topic Review
Cellular Senescence in Cancer
Cellular senescence is a state of stable cell cycle arrest that can be triggered in response to various insults and is characterized by distinct morphological hallmarks, gene expression profiles, and the senescence-associated secretory phenotype (SASP). Importantly, cellular senescence is a key component of normal physiology with tumor suppressive functions.
  • 2.1K
  • 14 Feb 2021
Topic Review
Cellular Senescence
Cellular senescence is a hallmark of aging. Accumulation of senescent cells promotes aging and triggers age-related disorders.
  • 809
  • 26 Jan 2021
Topic Review
Cellular Protein Trafficking in Low-Temperature Response Pathway
Over the years, although substantial progress has been made in understanding low-temperature response mechanisms in plants, the research is more focused on aerial parts of the plants rather than on the root or whole plant, and more efforts have been made in identifying and testing the major regulators of this pathway preferably in the model organism rather than in crop plants. For the low-temperature stress response mechanism, ICE-CBF regulatory pathway turned out to be the solely established pathway, and historically most of the low-temperature research is focused on this single pathway instead of exploring other alternative regulators.
  • 483
  • 24 Apr 2022
Topic Review
Cellular Differentiation
Across embryonic development to late adulthood, highly regulated cellular differentiation is imperative for proper development and growth, as well as for the maintenance of specialized tissues throughout life. In general, this crucial cellular process underlies organogenesis and tissue regeneration, and its dysregulation or pathological dysfunction may accelerate aging and/or the onset of disease. Furthermore, the effects of cannabinoids on cellular differentiation are seen across a broad variety of tissues, including many peripheral tissues such as muscle, bone, and blood.
  • 398
  • 04 Jul 2023
Topic Review
Cellular Components of Tumor Microenvironment  in cHL
Classic Hodgkin lymphoma (cHL) is a lymphoid neoplasm composed of rare neoplastic Hodgkin and Reed–Sternberg (HRS) cells surrounded by a reactive tumor microenvironment (TME) with suppressive properties against anti-tumor immunity. TME is mainly composed of T cells (CD4 helper, CD8 cytotoxic and regulatory) and tumor-associated macrophages (TAMs), but the impact of these cells on the natural course of the disease is not absolutely understood. 
  • 414
  • 28 Jun 2023
Topic Review
Cellular and Interaction Diversity of Tumor Microenvironment
The tumor microenvironment is a complex network of various interactions between immune cells and non-cellular components such as the extracellular matrix, exosomes and interleukins. Moreover, tumor heterogeneity and its constant modification may alter the immunophenotype and become responsible for its resistance regarding the therapies applied However, it should be remembered that in a strongly immunosuppressive neoplastic microenvironment, the immune system cells undergo reprogramming and most often cease to fulfill their original function. Therefore, understanding what happens within the tumor microenvironment, and which mechanisms are responsible for tumor development and progression should let us know how cancer could protect itself against the immune system.
  • 515
  • 12 Jul 2022
Topic Review
Cells Respond to Mechanical Cues of Extracellular Matrix
Extracellular biophysical properties have particular implications for a wide spectrum of cellular behaviors and functions, including growth, motility, differentiation, apoptosis, gene expression, cell–matrix and cell–cell adhesion, and signal transduction including mechanotransduction. Cells not only react to unambiguously mechanical cues from the extracellular matrix (ECM), but can occasionally manipulate the mechanical features of the matrix in parallel with biological characteristics, thus interfering with downstream matrix-based cues in both physiological and pathological processes. Bidirectional interactions between cells and (bio)materials in vitro can alter cell phenotype and mechanotransduction, as well as ECM structure, intentionally or unintentionally. Interactions between cell and matrix mechanics in vivo are of particular importance in a variety of diseases, including primarily cancer. 
  • 144
  • 31 Jan 2024
  • Page
  • of
  • 161
ScholarVision Creations