Topic Review
Autophagy in Osteoarthritis
Autophagy is an intracellular mechanism that maintains cellular homeostasis in different tissues. This process declines in cartilage due to aging, which is correlated with osteoarthritis (OA), a multifactorial and degenerative joint disease. Several studies show that microRNAs regulate different steps of autophagy but only a few of them participate in OA. Therefore, epigenetic modifications could represent a therapeutic opportunity during the development of OA. Besides, polyphenols are bioactive components with great potential to counteract diseases, which could reverse altered epigenetic regulation and modify autophagy in cartilage.
  • 455
  • 29 Mar 2022
Topic Review
Purinergic Signaling in Colorectal Cancer
Colorectal cancer is a leading cause of cancer-related death. Activated immune cells have the potential to eliminate tumor cells, but cancers gain the ability to suppress immune cell functions and escape immune attack. The researchers explored one mechanism that cancers use to evade immune cells in colorectal cancer. This mechanism alters levels of molecules known as purines. Purines are key players in cellular energetics and many cellular processes and can also lead to immune suppression in cancer.
  • 454
  • 21 Nov 2022
Topic Review
Autophagy in Acute Myeloid Leukemia
Autophagy is a highly conserved cellular degradation process that regulates cellular metabolism and homeostasis under normal and pathophysiological conditions. Autophagy and metabolism are linked in the hematopoietic system, playing a critical role in the self-renewal, survival and differentiation of hematopoietic stem and progenitor cells, and in cell death, particularly influencing the cell fate of the hematopoietic stem cell pool. In leukemia, autophagy supports leukemia cell growth, contributes to leukemia stem cell survival and resistance to chemotherapy. Acute myeloid leukemia (AML), a common type of acute leukemia with poor survival and prognosis.
  • 455
  • 20 Jun 2023
Topic Review
Astrocytes and Tissue Engineering
Astrocytes are key cells in the central nervous system. They are involved in many functions under physiological and pathological conditions. Primary cultures of astrocytes represent an important object for basic and translational neuroscience research, especially for in vitro cell models. Astrocyte cultures for functional cell models are most commonly isolated from rodent brains, because they are easily accessible and grow rapidly. Tissue engineering and biomaterial development represent a promising alternative to animal testing and provide an ideal opportunity to develop and test various biomaterials as scaffolds for purposes such as cell ingrowth and tissue repair.
  • 454
  • 13 Jul 2021
Topic Review
PTP61F Mediates Cell Competition
Tissue homeostasis via the elimination of aberrant cells is fundamental for organism survival. Cell competition is a key homeostatic mechanism, contributing to the recognition and elimination of aberrant cells, preventing their malignant progression and the development of tumors. 
  • 454
  • 02 Dec 2021
Topic Review
Activin B - Biomaker of ME/CFS
Reliable serum biomarkers are of immense need for diagnostic purposes of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS)—a disabling and complex disease for which diagnosis is mainly based on clinical symptoms. The aim of this study was to evaluate a possible diagnostic potential of activin B by directly comparing 134 cases of ME/CFS with 54 healthy controls. Analyses of human activin B level in plasma samples were performed using a validated human activin B ELISA assay. 
  • 454
  • 17 Dec 2021
Topic Review
Vegetables on the Modulation of Platelet Function
Cardiovascular diseases (CVDs) are a primary cause of deaths worldwide. Thrombotic diseases, specifically stroke and coronary heart diseases, account for around 85% of CVDs-induced deaths. Platelets (small circulating blood cells) are responsible for the prevention of excessive bleeding upon vascular injury, through blood clotting (haemostasis). However, their unnecessary activation results in thrombotic diseases. Hence, it is critical to control platelet activation under pathological conditions. Regular diet has a strong relationship with the development of CVDs, and therefore reviewing their beneficial effects on the modulation of platelet function is essential.  Here,  a few important, regularly used vegetables and demonstrate their effects on the modulation of platelet activation are listed.  
  • 454
  • 29 Mar 2022
Topic Review
The H+ Transporter SLC4A11
Solute-linked cotransporter, SLC4A11, a member of the bicarbonate transporter family, is an electrogenic H+ transporter activated by NH3 and alkaline pH. Although SLC4A11 does not transport bicarbonate, it shares many properties with other members of the SLC4 family. SLC4A11 mutations can lead to corneal endothelial dystrophy and hearing deficits that are recapitulated in SLC4A11 knock-out mice. SLC4A11, at the inner mitochondrial membrane, facilitates glutamine catabolism and suppresses the production of mitochondrial superoxide by providing ammonia-sensitive H+ uncoupling that reduces glutamine-driven mitochondrial membrane potential hyperpolarization. Mitochondrial oxidative stress in SLC4A11 KO also triggers dysfunctional autophagy and lysosomes, as well as ER stress. SLC4A11 expression is induced by oxidative stress through the transcription factor NRF2, the master regulator of antioxidant genes.
  • 454
  • 25 Jan 2022
Topic Review
Vimentin in Oral Cancers
Oral carcinogenesis is a multistep process. As much as 5% to 85% of oral tumors can develop from potentially malignant disorders (PMD). Although the oral cavity is accessible for visual examination, the ability of current clinical or histological methods to predict the lesions that can progress to malignancy is limited.
  • 454
  • 08 Feb 2022
Topic Review
Relevance of Aquaporins for Gamete Function and Cryopreservation
Aquaporins (AQPs) are a family of transmembrane channels that allow the transport of water and small solutes across cell membranes. Different members of this family have been identified in gametes. In sperm, they are relevant to osmoadaptation after entering the female reproductive tract, which is crucial for sperm motility activation and capacitation and, thus, for their fertilizing ability. In addition, they are relevant during the cryopreservation process, since some members of this family are also permeable to glycerol, one of the most frequently used cryoprotective agents in livestock. Regarding oocytes, AQPs are very important in their maturation but also during cryopreservation. 
  • 454
  • 29 Jun 2022
  • Page
  • of
  • 161
Video Production Service