Topic Review
Plant-RNA in Extracellular Vesicles
The release of extracellular vesicles (EVs) is a common language, used by living organisms from different kingdoms as a means of communication between them. Extracellular vesicles are lipoproteic particles that contain many biomolecules, such as proteins, nucleic acids, and lipids. The primary role of EVs is to convey information to the recipient cells, affecting their function. Plant-derived extracellular vesicles (PDEVs) can be isolated from several plant species, and the study of their biological properties is becoming an essential starting point to study cross-kingdom communication, especially between plants and mammalians. 
  • 331
  • 19 Apr 2022
Topic Review
Membrane Lipids in Light-Activation of Drosophila TRP Channels
Transient Receptor Potential (TRP) channels constitute a large superfamily of polymodal channel proteins with diverse roles in many physiological and sensory systems that function both as ionotropic and metabotropic receptors. From the early days of TRP channel discovery, membrane lipids were suggested to play a fundamental role in channel activation and regulation. A prominent example is the Drosophila TRP and TRP-like (TRPL) channels, which are predominantly expressed in the visual system of Drosophila. Light activation of the TRP and TRPL channels, the founding members of the TRP channel superfamily, requires activation of phospholipase Cβ (PLC), which hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) into Diacylglycerol (DAG) and Inositol 1, 4,5-trisphosphate (IP3).
  • 540
  • 19 Apr 2022
Topic Review
MicroRNA-21 Regulates Stemness in PDAC
Pancreatic ductal adenocarcinoma (PDAC) is the most common and aggressive type of pancreatic cancer (PCa) with a low survival rate. microRNAs (miRs) are endogenous, non-coding RNAs that moderate numerous biological processes. miRs have been associated with the chemoresistance and metastasis of PDAC and the presence of a subpopulation of highly plastic “stem”-like cells within the tumor, known as cancer stem cells (CSCs).
  • 298
  • 19 Apr 2022
Topic Review
Stress Granules Dynamics during Acute Ischemic Stroke
Ischemic stroke is a leading cause of death and disability worldwide. Following an ischemic insult, cells undergo endoplasmic reticulum (ER) stress, which increases the ER’s protein-folding and degradative capacities and blocks the global synthesis of proteins by phosphorylating the eukaryotic translation initiation factor 2-alpha (eIF2α). Phosphorylation of eIF2α is directly related to the dynamics of stress granules (SGs), which are membraneless organelles composed of RNA-binding proteins and mRNA. SGs play a critical role in mRNA metabolism and translational control. Other translation factors are also linked to cellular pathways, including SG dynamics following a stroke. Because the formation of SGs is closely connected to mRNA translation, it is interesting to explore the relationship between SG dynamics and cellular outcome in cases of ischemic damage.
  • 499
  • 19 Apr 2022
Topic Review Peer Reviewed
Biotechnology and Cytotherapeutics:The Swiss Progenitor-Cell Transplantation Program
Historically, primary human progenitor cells (e.g., WI-38 and MRC-5 diploid-cell sources) have been industrially applied in research and in manufacturing processes for vaccines and for biologicals. Furthermore, tissue-specific primary progenitor-cell banks have recently been developed and exploited for the provision of safe, consistent, and effective cellular active pharmaceutical ingredients (API) in homologous allogeneic regenerative medicine applications. Notably, the modern legal and regulatory frameworks for novel therapeutic products and for progenitor-cell therapy development have been iteratively optimized to guarantee utmost product safety, quality, and efficacy. Over 50 years of global technical hindsight around progenitor-cell biotechnological substrates and over 30 years of in-house clinical experience around the therapeutic uses of standardized progenitor-cell sources in Switzerland have demonstrated the importance of such biological materials for public health. The aim of this entry work was to summarize the evolution of the industrial applications of selected primary progenitor-cell sources, ranging from the use as robust biotechnological substrates to standardized cellular API manufacture and their clinical uses in highly specialized regenerative medicine.
  • 682
  • 18 Apr 2022
Topic Review
The B-cell Activating Factor/A Proliferation-Inducing Ligand System
It cannot present MZ B-cell populations without discussing the B-cell Activating Factor/A Proliferation-Inducing Ligand System (BAFF/APRIL) system. Without a doubt, one of the most important molecules for the survival and differentiation of B-cells is BAFF. BAFF, also known as B lymphocyte stimulator (BLyS), is part of the tumor necrosis factor (TNF) family and is encoded by the TNFSF13B gene.
  • 1.4K
  • 18 Apr 2022
Topic Review
Marginal Zone Precursor-Like in the Context of HIV
Marginal zone (MZ) B-cells are innate-like, and possess a polyreactive B-cell receptor (BCR) and several pattern recognition receptors (PRR) [1,2]. They are known to generate low-affinity first-line antibody responses against invading pathogens such as encapsulated bacteria.
  • 271
  • 18 Apr 2022
Topic Review
Image-Based Annotation of Chemogenomic Libraries for Phenotypic Screening
Phenotypical screening is a widely used approach in drug discovery for the identification of small molecules with cellular activities. However, functional annotation of identified hits often poses a challenge. The development of small molecules with narrow or exclusive target selectivity such as chemical probes and chemogenomic (CG) libraries, greatly diminishes this challenge, but non-specific effects caused by compound toxicity or interference with basic cellular functions still pose a problem to associate phenotypic readouts with molecular targets. Hence, each compound should ideally be comprehensively characterized regarding its effects on general cell functions. Here, the researchers report an optimized live-cell multiplexed assay that classifies cells based on nuclear morphology, presenting an excellent indicator for cellular responses such as early apoptosis and necrosis. This basic readout, in combination with the detection of other general cell damaging activities of small molecules such as changes in cytoskeletal morphology, cell cycle and mitochondrial health, provides a comprehensive time-dependent characterization of the effect of small molecules on cellular health in a single experiment. The developed high-content assay offers multi-dimensional comprehensive characterization that can be used to delineate generic effects regarding cell functions and cell viability, allowing an assessment of compound suitability for subsequent detailed phenotypic and mechanistic studies.
  • 351
  • 15 Apr 2022
Topic Review
Endocytic Pathways
Endocytosis is a shared process by which molecules, proteins, lipids, and liquids are sorted inside the cell via formation of intermediate vesicles. Vesicle formation occurs at the plasma membrane, where ligand receptors, binding proteins, and structural proteins are localized. After their internalization, the vesicles containing protein receptors or soluble molecules undergo a round of recycling, eventually leading to the fusion of the vesicle with an intracellular organelle. Such a process is an essential hallmark in all cell types—it regulates major cellular functions such as antigen presentation, intracellular signaling cascades, cell polarity, and synaptic transmission. Moreover, it is required to remove aged and dead cells from the body and is part of the defense against microbes. Given its importance, it is not surprising that even subtle perturbations affecting the endocytic machinery often impair cell function and cause several pathological conditions, such as cancer, and neurological and storage diseases. Finally, endocytosis represents an important cellular route for targeted drug-delivery in many diseases.
  • 1.2K
  • 15 Apr 2022
Topic Review
Nitric Oxide in Stem Cell Biology
Nitric oxide (NO) is a highly reactive gas with a brief life span, synthesized by the enzyme nitric oxide synthase (NOS) through L-arginine oxidation to L-citrulline. The dual role of NO in embryonic stem cells (ESCs) has been previously reported, preserving pluripotency and cell survival or inducing differentiation with a dose-dependent pattern. In this line, high doses of NO have been used in vitro cultures to induce focused differentiation toward different cell lineages being a key molecule in the regenerative medicine field. Moreover, optimal conditions to promote pluripotency in vitro are essential for their use in advanced therapies.
  • 1.9K
  • 15 Apr 2022
  • Page
  • of
  • 161
Video Production Service