Topic Review
Huntingtin and Other Neurodegeneration-Associated Proteins in Intracellular Pathologies
Neurodegenerative diseases are currently incurable. Numerous experimental data accumulated over the past fifty years have brought us closer to understanding the molecular and cell mechanisms responsible for their development. It is known that the basis of neurodegenerations are proteinopathies, disorders in the structure and function of various proteins that lead to their aggregation and toxic effects on cells. The most common neurodegenerative proteinopathies are amyloidosis (amyloid extracellular plaques in AD), tauopathy (various dementias), α-synucleopathy (Lowy bodies in PD), prionopathy, and TDP-43 proteinopathy (in amyotrophic lateral sclerosis (ALS)).
  • 597
  • 26 Dec 2022
Topic Review
Tannery Wastewater
Las aguas residuales de las curtidurías son producto de un proceso de transformación de materia orgánica a materia no degradable, que requiere la adición de compuestos y aditivos que permitan dicha transformación, generando a su vez residuos altamente contaminantes no solo para la salud humana, sino también para el medio ambiente.
  • 593
  • 01 Jun 2021
Topic Review
L-Lactate
l-Lactate plays a role as a metabolic and signaling molecule, accordingly, Vaccari-Cardoso and co-workers developed a viral vector to express a modified version of lactate oxidase (LOx) originating from the bacteria Aerococcus viridans. Their results in vitro show that LOx expression in astrocytes reduced their intracellular lactate levels and its release to the extracellular space.
  • 593
  • 07 Oct 2021
Topic Review
Zinc Oxide Nanoparticles and Their Physiochemical Properties
Zinc oxide nanomaterials have been the cynosure of this decade because of their immense potential in different biomedical applications. It includes their usage in the prognosis and treatment of different infectious and cellular diseases, owing to their peculiar physiochemical properties such as variable shape, size, and surface charge etc. Increasing demand and usage of the ZnO nanomaterials raise concerns about their cellular and molecular toxicity and their biocompatibility with human cells.
  • 593
  • 12 Jul 2023
Topic Review
GSK3
Glycogen synthase kinase-3 (GSK3) is a serine/threonine kinase. It was initially identified as a regulator (inhibitor) of glycogen synthesis. It has since been recognized as a multifunctional kinase with a variety of roles both in invertebrates and in vertebrate cells.
  • 593
  • 27 Aug 2021
Topic Review
Vav1 Promotes B-Cell Lymphoma Development
Vav1 is normally and exclusively expressed in the hematopoietic system where it functions as a specific GDP/GTP nucleotide exchange factor (GEF), firmly regulated by tyrosine phosphorylation. Mutations and overexpression of Vav1 in hematopoietic malignancies, and in human cancers of various histologic origins, are well documented. The research results suggest that overexpressing Vav1 in epithelial tissues induced chronic inflammatory reactions eventually leading to B-cell lymphomas development. The development of the lymphomas was accompanied by an increase in ERK phosphorylation, elevation of CSF- in the epithelial tissue, and an increase in CSF1-R expression in the lymphomas. These findings provide a novel mechanism by which Vav1 contributes to tumor propagation.
  • 592
  • 25 Mar 2022
Topic Review
The Interplay between Calcium and Reactive Oxygen Species
Mitochondria are key players in energy production, critical activity for the smooth functioning of energy-demanding organs such as the muscles, brain, and heart. Therefore, dysregulation or alterations in mitochondrial bioenergetics primarily perturb these organs. Within the cell, mitochondria are the major site of reactive oxygen species (ROS) production through the activity of different enzymes since it is one of the organelles with the major availability of oxygen.
  • 591
  • 16 Feb 2023
Topic Review
Breakdown of Filamentous Myofibrils
Protein degradation maintains cellular integrity by regulating virtually all biological pro- cesses, whereas impaired proteolysis perturbs protein quality control, and often leads to human disease. Two major proteolytic systems are responsible for protein breakdown in all cells: autophagy, which facilitates the loss of organelles, protein aggregates, and cell surface proteins; and the ubiquitin-proteasome system (UPS), which promotes degradation of mainly soluble proteins. Recent findings indicate that more complex protein structures, such as filamentous assemblies, which are not acces- sible to the catalytic core of the proteasome in vitro, can be efficiently degraded by this proteolytic machinery in systemic catabolic states in vivo. Mechanisms that loosen the filamentous structure seem to be activated first, hence increasing the accessibility of protein constituents to the UPS. In this review, we will discuss the mechanisms underlying the disassembly and loss of the intricate insoluble filamentous myofibrils, which are responsible for muscle contraction, and whose degradation by the UPS causes weakness and disability in aging and disease. Several lines of evidence indicate that myofibril breakdown occurs in a strictly ordered and controlled manner, and the function of AAA-ATPases is crucial for their disassembly and loss.
  • 590
  • 30 Apr 2021
Topic Review
Mesenchymal Stromal Cell Aging
Mesenchymal stem/stromal cells (MSCs) are a reservoir for tissue homeostasis and repair that age during organismal aging. Beside the fundamental in vivo role of MSCs, they have also emerged in the last years as extremely promising therapeutic agents for a wide variety of clinical conditions. MSC use frequently requires in vitro expansion, thus exposing cells to replicative senescence. Aging of MSCs (both in vivo and in vitro) can affect not only their replicative potential, but also their properties, like immunomodulation and secretory profile, thus possibly compromising their therapeutic effect. It is therefore of critical importance to unveil the underlying mechanisms of MSC senescence and to define shared methods to assess MSC aging status.
  • 589
  • 16 Jun 2021
Topic Review
Mechanisms of Reticulocyte Maturation
Reticulocyte maturation begins after enucleation in the bone marrow. In rats, reticulocytes reside in the bone marrow from 6.5–17 hrs depending on the blood demand. These reticulocytes are termed as R1 and are characterized for their multi-lobular shape and their motility. The final stages of maturation occur during circulation where macrophages residing in the spleen may facilitate the process. These reticulocytes in circulation are termed as R2, are non-motile and have a “deep-dish” shape”. As part of their maturation, reticulocytes need to remove or degrade residual organelles and RNA. In addition, the reticulocyte must reduce its surface area and volume. On average, labelled baboon reticulocytes showed a reduction of 20% of their surface area and 15% of their volume after the first 24 h in circulation; at this point they showed a similar size distribution to that of mature RBC.
  • 589
  • 29 Mar 2022
  • Page
  • of
  • 161
Video Production Service