Topic Review
Therapeutic Role of Chromatin Remodeling in Heart Failure
Cardiovascular diseases are a major cause of death globally, with no cure to date. Many interventions have been studied and suggested, of which epigenetics and chromatin remodeling have been the most promising. Major advancements have been made in the field of chromatin remodeling, particularly for the treatment of heart failure, because of innovations in bioinformatics and gene therapy. Specifically, understanding changes to the chromatin architecture have been shown to alter cardiac disease progression via variations in genomic sequencing, targeting cardiac genes, using RNA molecules, and utilizing chromatin remodeler complexes.
  • 295
  • 22 Feb 2023
Topic Review
Molecular Mechanisms Involved in Systemic Sclerosis-Related Lung Fibrosis
Systemic sclerosis (SSc), or scleroderma, is an autoimmune connective tissue disease with one of the highest mortality rates among the rheumatic diseases. Fibrosis is recognized to be a defining feature of SSc, affecting the skin and multiple visceral organs. As a result, SSc is considered the prototypic fibrosing disease. 
  • 292
  • 21 Feb 2023
Topic Review
Impact of C99 on Alzheimer’s Disease
Amyloid beta (Aβ) is produced from a type-I transmembrane protein, amyloid beta precursor protein (APP). One of the APP metabolites, the 99-amino acids C-terminal fragment (C99, also called βCTF), is a direct precursor of Aβ and accumulates in the Alzheimer’s disease (AD) patient’s brain to demonstrate toxicity independent of Aβ. Conventional drug discovery strategies have focused on Aβ toxicity on the “outside” of the neuron, but C99 accumulation might explain the toxicity on the “inside” of the neuron, which was overlooked in the hypothesis. Furthermore, the common region of C99 and Aβ is a promising target for multifunctional AD drugs.
  • 380
  • 21 Feb 2023
Topic Review
Natural Killer Cell-Derived Extracellular Vesicles for Cancer
Cancer is the second leading contributor to global deaths caused by non-communicable diseases. The cancer cells are known to interact with the surrounding non-cancerous cells, including the immune cells and stromal cells, within the tumor microenvironment (TME) to modulate the tumor progression, metastasis and resistance. Chemotherapy and radiotherapy are the standard treatments for cancers. A new generation of immunotherapy using natural killer (NK) cells, cytotoxic CD8+ T-lymphocytes or macrophages was developed to achieve tumor-specific targeting and circumvent the adverse effects.
  • 650
  • 21 Feb 2023
Topic Review
Hallmarks of Senescence
Aging is a complex process characterized by an ongoing decline in physiological functions, leading to degenerative diseases and an increased probability of death. Cellular senescence has been typically considered as an anti-proliferative process; the chronic accumulation of senescent cells contributes to tissue dysfunction and aging. Recognizing the hallmarks of senescence is crucial for the research and development of therapies against aging.
  • 761
  • 20 Feb 2023
Topic Review
Functional Roles of ISG15/ISGylation in Cancer
The protein ISG15 encoded by interferon-stimulated gene (ISG) 15 is the first identified member of the ubiquitin-like protein family and exists in the form of monomers and conjugated complexes. Like ubiquitin, ISG15 can mediate an ubiquitin-like modification by covalently modifying other proteins, known as ISGylation. There is growing evidence showing that both the free and conjugated ISG15 are involved in multiple key cellular processes, including autophagy, exosome secretion, DNA repair, immune regulation, and cancer occurrence and progression.
  • 632
  • 17 Feb 2023
Topic Review
Parietal Epithelial Cell Behavior
Glomerular parietal epithelial cells (PECs) have been increasingly recognized to have crucial functions. Lineage tracking in animal models showed the expression of a podocyte phenotype by PECs during normal glomerular growth and after acute podocyte injury, suggesting a reparative role of PECs. Conversely, activated PECs are speculated to be pathogenic and comprise extracapillary proliferation in focal segmental glomerulosclerosis (FSGS) and crescentic glomerulonephritis (CrescGN). The reparative and pathogenic roles of PECs seem to represent two sides of PEC behavior directed by the local milieu and mediators. 
  • 223
  • 17 Feb 2023
Topic Review
Mechanism of Action of circRNAs in Cancer Cells
The ever-increasing number of cancer cases and persistently high mortality underlines the urgent need to acquire new perspectives for developing innovative therapeutic approaches. As the research on protein-coding genes brought significant yet only incremental progress in the development of anticancer therapy, much attention is now devoted to understanding the role of non-coding RNAs (ncRNAs) in various types of cancer. The ncRNAs recognized previously as “dark matter” are, in fact, key players in shaping cancer development. Moreover, breakthrough discoveries concerning the role of a new group of ncRNAs, circular RNAs, have evidenced their high importance in many diseases, including malignancies. 
  • 310
  • 17 Feb 2023
Topic Review
Notch Signaling in Inflammatory Diseases
Notch signaling, a highly conserved pathway in mammals, is crucial for differentiation and homeostasis of immune cells. The spectrum of diseases is as broad as the cellular functions controlled by Notch signaling. In various types of cancer, cerebrovascular diseases, and inherited disease syndromes, Notch signaling has been found to exert a detrimental impact as well as in inflammatory diseases such as rheumatoid arthritis, systemic lupus erythematosus (SLE), systemic sclerosis (SSc), primary biliary cirrhosis, and atherosclerosis. 
  • 526
  • 17 Feb 2023
Topic Review
The Interplay between Calcium and Reactive Oxygen Species
Mitochondria are key players in energy production, critical activity for the smooth functioning of energy-demanding organs such as the muscles, brain, and heart. Therefore, dysregulation or alterations in mitochondrial bioenergetics primarily perturb these organs. Within the cell, mitochondria are the major site of reactive oxygen species (ROS) production through the activity of different enzymes since it is one of the organelles with the major availability of oxygen.
  • 623
  • 16 Feb 2023
  • Page
  • of
  • 161
Video Production Service