Topic Review
Caffeine in Neurodegenerative Diseases
There has been considerable research showing that coffee consumption seems to be beneficial to human health, as it contains a mixture of different bioactive compounds such as chlorogenic acids, caffeic acid, alkaloids, diterpenes and polyphenols. Neurodegenerative diseases (NDs) are debilitating, and non-curable diseases associated with impaired central, peripheral and muscle nervous systems. Several studies demonstrate that neuroinflammation mediated by glial cells—such as microglia and astrocytes—is a critical factor contributing to neurodegeneration that causes the dysfunction of brain homeostasis, resulting in a progressive loss of structure, function, and number of neuronal cells. This happens over time and leads to brain damage and physical impairment. The most known chronic NDs are represented by Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS) and Huntington’s disease (HD). According to epidemiological studies, regular coffee consumption is associated with a lower risk of neurodegenerative diseases. 
  • 737
  • 04 Nov 2022
Topic Review
Graviperception and Graviresponses in Euglena gracilis
The genus Euglena contains unicellular eukaryotic flagellates. In addition to light and chemicals, the cells perceive the gravitational field of the Earth and orient themselves paralell to the gravivector to optimize their position in the water column. The perception is based on transient receptor proteins in the membrane which are stimulated by the pressure of the cell content onto the lower membrane. Upon stimulation these proteins open and allow the influx of calcium from the outer medium which binds to a specific calmodulin. In turn this enzyme activates a adenylyl cyclase which produces cAMP believed to stimulate a phosphodiesterase A which finally modifies a flagellar protein which results in a course correction. Since Euglena is photosynthetic it absorbs carbon dioxide and produces oxygen and is thus an excellent candidate for a bioregenerative life support system during long-term space flights.
  • 419
  • 04 Nov 2022
Topic Review
Cell Wall Associated Kinase
Cell wall associated kinases (WAKs) are receptor-like protein kinases, found in plant cell walls, that have the capability to transmit signals directly by their cytoplasmic kinase domains. They usually link the plasma membrane to the protein and carbohydrate that composed the cell wall. The receptor-like proteins contain a cytoplasmic serine threonine kinase and a less conserved region; bound to the cell wall and contains a series of epidermal growth factor repeats. WAKs are found in various plants and crops like rice, and maize. In plants genome like Arabidopsis, WAKs, are encoded by five highly similar genes clustered in a 30-kb locus, among them WAK1 & WAK2 are highly distributed. They are primarily involved in regulating plant cell wall functions including cell expansion, bind as well as response to pectins, pathogen response and also protects plants from detrimental effects.
  • 613
  • 03 Nov 2022
Topic Review
Taxonomic List of Viruses
This is a taxonomic list of viruses according to the most recent (2014) taxonomy release by the International Committee on Taxonomy of Viruses (ICTV), placed into the groups of the Baltimore classification system. Though not used by the ICTV, Baltimore classification, which groups viruses together based on how they produce mRNA, is used in conjunction with the ICTV's work in modern virus classification.
  • 563
  • 03 Nov 2022
Topic Review
Sirtuins in Breast and Prostate Cancer
In mammals, seven sirtuins (SIRT1–7) have been identified, which primarily function as NAD-dependent deacetylases (SIRT1–3 and SIRT5–7) and ADP-ribosyl transferases (SIRT4 and 6). Additionally, sirtuins have been reported to function as demyristoylases (SIRT1–3 and 6), lipoamidases (SIRT4), and desuccinylases/demalonylases/deglutarylases (SIRT5). The forcus herein is the information on the tumor promotion or suppression roles of SIRT1–7 in breast and prostate cancers. Precisely, it is highlighted that sirtuins regulate various proteins implicated in proliferation, apoptosis, autophagy, chemoresistance, invasion, migration, and metastasis of both breast and prostate cancer.
  • 505
  • 03 Nov 2022
Topic Review
Extracellular Vesicles for Cancer Gene Therapy
Extracellular vesicles (EVs) are nanoscale vesicles secreted by most types of cells as natural vehicles to transfer molecular information between cells. Due to their low toxicity and high biocompatibility, EVs have attracted increasing attention as drug delivery systems. Researchers summarize the techniques and methods to increase EV yield, enhance nucleic acid loading efficiency, extend circulation time, and improve targeted delivery. 
  • 494
  • 03 Nov 2022
Topic Review
Impact of Endoplasmic Reticulum Stress for Type-1-Diabetes
Type-1-diabetes (T1D) is a multifactorial disorder with a global incidence of about 8.4 million individuals in 2021. It is primarily classified as an autoimmune disorder, where the pancreatic β-cells are unable to secrete sufficient insulin. This leads to elevated blood glucose levels (hyperglycemia). The development of T1D is an intricate interplay between various risk factors, such as genetic, environmental, and cellular elements. Here, the focus is on cellular elements such as ER stress leading to defects in insulin secretion and β-cell destruction.
  • 453
  • 03 Nov 2022
Topic Review
Beta-ketoacyl-(acyl-carrier-protein) Synthase III
In enzymology, a β-ketoacyl-[acyl-carrier-protein] synthase III (EC 2.3.1.180) is an enzyme that catalyzes the chemical reaction Thus, the two substrates of this enzyme are acetyl-CoA and malonyl-[acyl-carrier-protein], whereas its 3 products are acetoacetyl-[acyl-carrier-protein], CoA, and CO2. This enzyme belongs to the family of transferases, to be specific those acyltransferases transferring groups other than aminoacyl groups. This enzyme participates in fatty acid biosynthesis. β-Ketoacyl-acyl-carrier-protein synthase III is involved in the dissociated (or type II) fatty-acid biosynthesis system that occurs in plants and bacteria. The role of FabH in fatty acid synthesis has been described in Streptomyces glaucescens, Streptococcus pneumoniae, and Streptomyces coelicolor.
  • 399
  • 03 Nov 2022
Topic Review
Molecular Inversion Probe
Molecular Inversion Probe (MIP) belongs to the class of Capture by Circularization molecular techniques for performing genomic partitioning, a process through which one captures and enriches specific regions of the genome. Probes used in this technique are single stranded DNA molecules and, similar to other genomic partitioning techniques, contain sequences that are complementary to the target in the genome; these probes hybridize to and capture the genomic target. MIP stands unique from other genomic partitioning strategies in that MIP probes share the common design of two genomic target complementary segments separated by a linker region. With this design, when the probe hybridizes to the target, it undergoes an inversion in configuration (as suggested by the name of the technique) and circularizes. Specifically, the two target complementary regions at the 5’ and 3’ ends of the probe become adjacent to one another while the internal linker region forms a free hanging loop. The technology has been used extensively in the HapMap project for large-scale SNP genotyping as well as for studying gene copy alterations and characteristics of specific genomic loci to identify biomarkers for different diseases such as cancer. Key strengths of the MIP technology include its high specificity to the target and its scalability for high-throughput, multiplexed analyses where tens of thousands of genomic loci are assayed simultaneously.
  • 978
  • 02 Nov 2022
Topic Review
LAG3
Lymphocyte-activation gene 3, also known as LAG-3, is a protein which in humans is encoded by the LAG3 gene. LAG3, which was discovered in 1990 and was designated CD223 (cluster of differentiation 223) after the Seventh Human Leucocyte Differentiation Antigen Workshop in 2000, is a cell surface molecule with diverse biologic effects on T cell function. It is an immune checkpoint receptor and as such is the target of various drug development programs by pharmaceutical companies seeking to develop new treatments for cancer and autoimmune disorders. In soluble form it is also being developed as a cancer drug in its own right.
  • 661
  • 02 Nov 2022
  • Page
  • of
  • 161
Video Production Service