Topic Review
Protein Folding: Enigma and Solution
Protein folding is a process that converts the unfolded, disordered protein chain into a chain having a definite, unique three-dimensional structure.
  • 1.1K
  • 23 Apr 2021
Topic Review
PAMAM Dendrimers
Poly(amidoamine) (PAMAM) dendrimers are repetitively branched, three-dimensional molecules, made of amide and amine subunits, possessing unique physiochemical properties.
  • 1.0K
  • 15 Feb 2022
Topic Review
Commercial Targeted Libraries in Drug Design
After the identification of a biological target (enzyme, receptor, protein and so on), the focus of the early phase of drug discovery rests on the identification of leads or compounds that exhibit pharmacological activity against this specific target. Compounds of interest are most often discovered in pre-existing libraries of compounds that can be either virtual or physical. Computer-aided methods which have become increasingly important over the years in drug development utilize virtual compound libraries. While physical compound libraries reach the number of millions of molecules, virtual compound libraries created by large pharmaceutical companies can range from 107 to 1018 molecules. Investigations of these libraries identifies specific molecules, synthetic pathways and focus on a specific chemical space. Targeted libraries are often smaller and are focused towards a specific chemical space. They are created by using relevant biological information with the aim to decrease the processing time associated with larger libraries while maintaining the most relevant chemical space where lead compounds can be found. Due to the fact that they required less computational or wet-lab labor to process they have become very popular with smaller laboratories which try to compete in the drug-development sector. Many modern vendors of compounds today offer such libraries, but the quality of the procedure used to define desired chemical space and select compounds is questionable.
  • 1.0K
  • 25 May 2022
Topic Review
TPC1 in plants
TPC1 in plants is localized in the vacuolar membrane. Its activity is strictly regulated by several factors emphasizing its complex structure and function. The physiological role of TPC1 is under debate. The TPC1 hyperactive version fou2 (carring D454N mutation) is characterized by an overproduction of jasmonate acid (JA), however the tpc1-2 knockout mutant has no pronounced phenotype. The intriguing concept of Ca2+-induced Ca2+ release was assigned to Vicia faba TPC1 in 1994 by Ward and Schroeder, however it has still not been confirmed for the model plant Arabidopsis thaliana.
  • 913
  • 27 Oct 2020
Topic Review
Electrical Source Imaging
Electrical Source Imaging (ESI) is an imaging technique utilized to localize the activated brain regions by incorporating temporal and spatial components from electroencephalogram (EEG) signals. 
  • 899
  • 13 Jul 2021
Topic Review
Cell Cycle and Its Regulation
A decisive characteristic of life is the reproductive capacity of cells, which it does through a collection of highly complex and ordered regulatory process commonly known as the cell cycle. The cell cycle combines DNA replication with chromosomal segregation in an oscillatory manner. In this way, the cell cycle coordinates the precise replication of the genome through specific events to ensure that the duplicated genetic material is distributed equally to each daughter cell. The repetition of this process leads to the exponential proliferation of cells. This process is classically described as interphase and mitosis (M) phase. Most of the cell cycle is in interphase, which encompasses Gap 1 (G1), synthesis (S), and Gap 2 (G2) phases. During the interphase, the cell grows, replicates genetic materials, and repairs DNA damage and replication errors. M phase, a relatively short period, consists of prophase, metaphase, anaphase, and telophase, which completes the equal distribution of genome and cytoplasmic components. Following interphase, most nondividing cells exit the cell cycle at G1 into G0 phase (quiescence). G0 was originally used to describe cells that are not in the cell cycle but with the potential for division. The rate of cell cycling varies with the developmental stage and cell type. In general, the cell cycle is most active during development, as cells in early embryos can proliferate and differentiate to form tissues and organs. The cell cycle involves numerous life processes, and it is closely related to the growth and proliferation of eukaryotic cells, development of organisms, regulation of DNA damage repair, and occurrence of diseases.
  • 867
  • 25 Jun 2021
Topic Review
Photosensitive Substances
Photodynamic therapy (PDT) is part of photochemotherapy and requires the presence of a photosensitive substance (drug, PS), oxygen, and a powerful light source in the area of absorption of the PS used.
  • 860
  • 13 Apr 2021
Topic Review
Quantum Biology
Recent evidence suggests that a broad range of complex and dynamic processes in living systems could exploit quantum effects to enhance and/or regulate biological functions. These non-trivial quantum effects may play a crucial role in maintaining the non-equilibrium state of biomolecular systems so as to achieve biological advantages that cannot be understood within the boundaries of classical physics. Quantum biology is the study of such quantum aspects of living systems. 
  • 846
  • 24 Mar 2021
Topic Review
SARS-CoV-2 Nucleocapsid Protein
SARS-CoV-2 nucleocapsid protein (NCoV2) plays a key role in various processes related to the viral replication cycle such as the RNA genome packaging, interaction with other viral proteins. It has thus been a target for new drug development.
  • 843
  • 27 May 2021
Topic Review
Allosteric Drug Discovery
Understanding molecular mechanisms underlying the complexity of allosteric regulation in proteins has attracted considerable attention in drug discovery due to the benefits and versatility of allosteric modulators in providing desirable selectivity against protein targets while minimizing toxicity and other side effects. The proliferation of novel computational approaches for predicting ligand–protein interactions and binding using dynamic and network-centric perspectives has led to new insights into allosteric mechanisms and facilitated computer-based discovery of allosteric drugs. Although no absolute method of experimental and in silico allosteric drug/site discovery exists, current methods are still being improved. As such, the critical analysis and integration of established approaches into robust, reproducible, and customizable computational pipelines with experimental feedback could make allosteric drug discovery more efficient and reliable. In this article, we review computational approaches for allosteric drug discovery and discuss how these tools can be utilized to develop consensus workflows for in silico identification of allosteric sites and modulators with some applications to pathogen resistance and precision medicine. The emerging realization that allosteric modulators can exploit distinct regulatory mechanisms and can provide access to targeted modulation of protein activities could open opportunities for probing biological processes and in silico design of drug combinations with improved therapeutic indices and a broad range of activities.
  • 829
  • 26 Sep 2021
  • Page
  • of
  • 20