Topic Review
Thermodynamic Insights into Symmetry Breaking
Symmetry breaking is a phenomenon that is observed in various contexts, from the early universe to complex organisms, and it is considered a key puzzle in understanding the emergence of life. The importance of this phenomenon is underscored by the prevalence of enantiomeric amino acids and proteins. The presence of enantiomeric amino acids and proteins highlights its critical role. However, the origin of symmetry breaking has yet to be comprehensively explained, particularly from an energetic standpoint.  Therefore, a novel approach is explored by considering energy dissipation, specifically the lost free energy, as a crucial factor in elucidating symmetry breaking. A comprehensive thermodynamic analysis applicable to all scales from elementary particles to aggregate structures such as crystals is performed, we present experimental evidence establishing a direct link between nonequilibrium free energy and energy dissipation during the formation of the structures. Results emphasize the pivotal role of energy dissipation, not only as an outcome but as the trigger for symmetry breaking. This insight suggests that understanding the origins of complex systems, from cells to living beings and the universe itself, requires a lens focused on nonequilibrium processes  
  • 72
  • 15 Apr 2024
Topic Review
Logic Gates and Molecular Logic Gates
Logic gates are devices used to perform binary arithmetic and logical operations and thus constitute the basis of modern computers. They perform Boolean logic operations on one or more inputs to produce an output. Molecular switches convert input stimulations into output signals. Therefore, the principles of binary logic can be applied to the signal transduction operated by molecular switches. The presence of various ions, neutral species, pH, temperature, and viscosity, among many others, result in color or emission changes due to the complex interplay of many excited state processes and environmental parameters. In this entry, basic logic gates are defined, and their types are given, while examples of molecular logic gates are also presented.
  • 88
  • 29 Mar 2024
Topic Review
Phase Equilibrium Studies in the RE2O3-REF3-LiF System
The solubility of rare earth oxides in molten salt directly affects the selection of operational parameters in the electrolysis process. When the added amount of RE2O3 is less than its solubility, it leads to a decreased electrolytic efficiency. Conversely, an excessive amount of oxide is prone to settle at the bottom of the electrolytic cell, impeding smooth production. The RE2O3 solubility in the fluoride salt can be represented by the phase equilibrium of the RE2O3-REF3-LiF system. The isothermal lines in the primary phase field of rare earth oxide represent the solubility of the oxide in the fluoride salt at the corresponding temperature.
  • 77
  • 18 Mar 2024
Topic Review
Phase Equilibrium Studies of Nonferrous Smelting Slags
Pyrometallurgy is the primary technique for the production of many nonferrous metals such as copper, lead, and zinc. The phase equilibrium information of smelting slags plays an important role in the efficient extraction of metals and energy consumption. The experimental technologies used in phase equilibrium studies are compared. The presentation and applications of the pseudo-ternary and pseudo-binary phase diagrams are demonstrated in the Fe–Si–Ca–Zn–Mg–Al–Cu–S–O system. 
  • 87
  • 15 Mar 2024
Topic Review
Functional Materials for Optical Data Storage
In the current data age, the fundamental research related to optical applications has been rapidly developed. Countless new-born materials equipped with distinct optical properties have been widely explored, exhibiting tremendous values in practical applications. The optical data storage technique is one of the most significant topics of the optical applications, which is considered as the prominent solution for conquering the challenge of the explosive increase in mass data, to achieve the long-life, low-energy, and super high-capacity data storage.
  • 60
  • 01 Mar 2024
Topic Review
Magnetism-Covalent Bonding Interplay
Valence electrons are one of the main players in solid catalysts and in catalytic reactions, since they are involved in several correlated phenomena like chemical bonding, magnetism, chemisorption, and bond activation. This is particularly true in the case of solid catalysts containing d-transition metals, which exhibit a wide range of magnetic phenomena, from paramagnetism to collective behaviour. Indeed, the electrons of the outer d-shells are, on one hand, involved in the formation of bonds within the structure of a catalyst and on its surface, and, on the other, they are accountable for the magnetic properties of the material.
  • 123
  • 23 Feb 2024
Topic Review
Neoproterozoic Fold Belts Surrounding the São Francisco Craton
The São Francisco craton and its continuation in Africa, the Congo Craton, constitute Archean–Paleoproterozoic paleocontinents which, via various continental collisions during the Neoproterozoic–Cambrian, formed the western portion of the Gondwana supercontinent. The folded Brasiliano/Pan African belts occur on the margins of the paleocontinents in the form of several superimposed sedimentary basins, showing different types of magmatic arcs (accretionary material) and which, via collisional processes, were transformed into Neoproterozoic–Cambrian orogenic belts.
  • 54
  • 21 Feb 2024
Topic Review
SmCo5 Transition Metal Substitution
SmCo5 constitutes one of the strongest classes of permanent magnets, which exhibit magnetocrystalline anisotropy with uniaxial character and enormous energy and possess high Curie temperature. The group of transition metals are sometimes mentioned as the d-block elements due to the fact that d electrons are the external unfilled shells. They are contained within the middle area of the periodic table and are most important for magnetic materials belonging in the fourth period (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn), with the exception of Nb, which belongs to the fifth. The electron configuration in is (n−1)d1–10 ns2; however, in some cases in intermetallics, the electrons are distributed in a different manner and subshells or partially filled orbitals may arise. Most common cations have a valence of +2 or +3, but there are some that may provide only one electron forming +1 cations or in some cases higher.
  • 481
  • 17 Feb 2024
Topic Review
Solvatochromism in Solvent Mixtures
Many reactions are carried out in solvent mixtures, mainly because of practical reasons. For example, E2 eliminations are favored over SN2 substitutions in aqueous organic solvents because the bases are desolvated.
  • 104
  • 15 Jan 2024
Topic Review
Colloids in Curved Space
Self-assembly of nanoscale objects is of essential importance in materials science, condensed matter physics, and biophysics. Curvature modifies the principles and sequence of self-assembly in Euclidean space, resulting in unique and more complex structures. Understanding self-assembly behavior in curved space is not only instrumental for designing structural building blocks and assembly processes from a bottom-up perspective but is also critically important for delineating various biological systems.
  • 72
  • 11 Jan 2024
  • Page
  • of
  • 14