Topic Review
Polymeric Nanoparticles in Cardiovascular Diseases
Nanoparticles, including biodegradable polymeric nanoparticles, are able to increase the efficiency and reduce the degradability of natural polyphenols, thus increasing their beneficial abilities in the target tissues. Resveratrol-, quercetin-, or curcumin-loaded polymeric nanoparticles have been shown to markedly reduce reactive oxygen species formation, the inflammatory process, apoptosis, lipid peroxidation, cardiac hypertrophy, and even to delay myocardium injury due to ischemia/reperfusion. Thus, polymeric nanoparticles represent a promising tool for the delivery of natural polyphenols to target tissues and enhance their desirable effects in the cardiovascular system.
  • 509
  • 27 Oct 2020
Topic Review
Natural sulfur containing compounds
The present review aims to characterize the general characteristics, physicochemical properties,and health-related studies of onion, garlic, and cruciferous vegetable consumption, as well as theinfluence of food processing on their content of active substances. The review combines distinctchapters where information relevant for nutraceutical and functional food engineers, medical doctors,as well as consumers can be obtained. We believe that the review will stimulate further studies relatedto the implementation of the most accurate sources of sulfur compounds from chosen plants whichcould support the therapy of cancer patients. Moreover, the review aims to present cost-e ectiveanti-tumor means that would include the implementation in the diet of sulfur-based compoundsin foods.
  • 487
  • 26 Aug 2020
Topic Review
Zinc Complexes as Anticancer Agents
The search for anticancer metal-based drugs alternative to platinum derivatives could not exclude zinc derivatives due to the importance of this metal for the correct functioning of the human body. Zinc, the second most abundant trace element in the human body, is one of the most important micro-elements essential for human physiology. Its ubiquity in thousands of proteins and enzymes is related to its chemical features, in particular, its lack of redox activity and its ability to support different coordination geometries and to promote fast ligands exchange. Analogously to other trace elements, the impairment of its homeostasis can lead to various diseases and in some cases can be also related to cancer development. However, zinc complexes generally exert lower toxicity in comparison to other metal-based drugs and many zinc derivatives have been proposed as antitumor agents. Among them zinc complexes  comprising  N-donor ligands have been surveyed and analyzed. 
  • 478
  • 22 Dec 2020
Topic Review
Screening of Medicinal Plants
Secondary metabolites, used as a single compound or as a mixture, are medicines that can be effective and safe even when synthetic drugs fail. They may even potentiate or synergize the effects of other compounds in the medicine. To meet the positive demands, heterologous expression of the genes involved in the biosynthesis of the potent compound will help in the production on the required scale. Further modifications to enhance the ADME properties of the compounds will have a significant advantage in the drug’s biological activities and bioavailability.
  • 476
  • 30 Oct 2020
Topic Review
Cardiac Glycosides
Cardiac glycosides (CG’s) are naturally occurring biologically active small molecules, used to diagnose a diversity of heart diseases such as congestive heart failure and cardiac arrhythmia. The story of CG’s started over 100 years ago when Sir William Withering reported the use of foxglove plant for treating “dropsy” associated with congestive heart failure and the foxglove plant (Digitalis purpurea) was still in the use for the extraction of Digoxin, a cardiac glycoside used to treat congestive heart failures (Johnson., 2012). The core structure of CGs comprises a steroid nucleus attached to a five-membered lactone ring (cardenolide) or six-membered lactone rings (bufadienolides) along with sugar moieties. Major plant-derived CGs were obtained from plant families of Apocynaceae, Scrophulariaceae, and Asparagaceae (Thevitia neriifolia, Neerium oleander, Digitalis purpurea, Digitalis lanata, Urginea maritime, and Strophanthus kombe). Structurally, all these contain a core steroid nucleus connected with sugar moiety at C3 position and lactone moiety at C17 position (Figure 1.3). The pharmacological significance of all the CG’s lies in the core steroid confirmation that contains A/B and C/D cis- portions and the properties such as pharmacokinetics and pharmacodynamics lie between the confined sugars molecules (Pongrakhananon., 2013). Apart from the plant sources, CG’s were also isolated from several animal species such as bufadienolide was isolated from frogs, and also mammalian tissues contain a cardiac glycoside which is similar to endogenous digitalis (Melero et al., 2000). Quite a few studies have conveyed that the human body does contain a lot more CG’s in different parts. For example, the plasma membrane contains Ouabain and Proscillaridin A and human urine contains digoxin and marinobufagenin whereas human lenses consist of 19-norbufalin (Schoner and Scheiner-Bobis., 2007). In the year 1785, William Withering was the first person to use a digitalis compound from Digitalis purpurea to treat congestive heart failures. Currently, Digoxin is used for treating congestive heart failures. The mechanism of action of Digoxin is that it can inhibit the sodium-potassium pump (Na+/K+-ATPase). Living organisms maintain more percentage of K+ within the cell and less percentage of Na+. However, the scenario at the outside of the cell is quite opposite to the intracellular conditions where a high percentage of Na+ and less percentage of K+ will be maintained. Hence, there is a concentration incline that exists between the outside and inside cellular environments, which will be maintained by sodium-potassium pump. The Na+/K+-ATPase is recognized as a transmembrane protein whose functions are to maintain ionic balance in the heart tissue. Na+/K+-ATPase utilizes ATP as the whole energy source, to exchange two K+ ions inside the cell and pushes three Na+ ions outside to maintain intra cellular homeostasis. Also, Na+/K+-ATPase transports glucose and amino acids by keeping less concentration of Na+ within the cell and helps in the maintenance of electrochemical incline. The increment of the Na+ level inside the cell retort to CGs fortifies the ion exchange mechanism. This leads to the expansion of intracellular Ca2+ percentage which therefore promotes organelle instances such as myocardial contractibility, and generates optimistic inotropic effects in the heart cell with CGs (Kaplan., 2002).  
  • 449
  • 12 Aug 2020
Topic Review
Dendrimers in Biomedicine
Biomedicine represents one of the main study areas for dendrimers, which have proven to be valuable both in diagnostics and therapy, due to their capacity for improving solubility, absorption, bioavailability and targeted distribution. Molecular cytotoxicity constitutes a limiting characteristic, especially for cationic and higher-generation dendrimers. Antineoplastic research of dendrimers has been widely developed, and several types of poly(amidoamine) and poly(propylene imine) dendrimer complexes with doxorubicin, paclitaxel, imatinib, sunitinib, cisplatin, melphalan and methotrexate have shown an improvement in comparison with the drug molecule alone. The anti-inflammatory therapy focused on dendrimer complexes of ibuprofen, indomethacin, piroxicam, ketoprofen and diflunisal. In the context of the development of antibiotic-resistant bacterial strains, dendrimer complexes of fluoroquinolones, macrolides, beta-lactamines and aminoglycosides have shown promising effects. Regarding antiviral therapy, studies have been performed to develop dendrimer conjugates with tenofovir, maraviroc, zidovudine, oseltamivir and acyclovir, among others. Furthermore, cardiovascular therapy has strongly addressed dendrimers. Employed in imaging diagnostics, dendrimers reduce the dosage required to obtain images, thus improving the efficiency of radioisotopes. Dendrimers are macromolecular structures with multiple advantages that can suffer modifications depending on the chemical nature of the drug that has to be transported. The results obtained so far encourage the pursuit of new studies.
  • 445
  • 11 Sep 2020
Topic Review
Classification of the Approved EGFR-TKIs
Targeting EGFR with small-molecule inhibitors is a valid strategy in cancer therapy. Since the approval of the first EGFR-TKI in 2003, a huge number of EGFR inhibitors were reported. Classification of these inhibitors could help the researchers to understand their structure-activity relationship. Herein, we introduce different types of classifications of the EGFR-TKIs, which received global approval for clinical use. In the following, the EGFR-targeting drugs are classified based on their chemistry, clinical use, target kinases, and the type of inhibition/interaction with EGFR. 
  • 437
  • 25 Nov 2021
Topic Review
Hsp90 C-Terminal Inhibitors
Hsp90 is a molecular chaperone with over 300 client proteins that act in the cell cycle and in signalling processes. Disruption of Hsp90 chaperone activity by inhibitors induces simultaneous proteasomal degradation of many deregulated oncoproteins that are critical for all fundamental hallmarks of cancers. To date, mainly Hsp90 N-terminal domain inhibitors have been developed for cancer treatments; however, several of these have not been successful in clinical trials, often due to toxicity. One of the major drawbacks associated with Hsp90 N-terminal domain inhibition is induction of the pro-survival heat-shock response. This response results in increased levels of Hsp90 and anti-apoptotic proteins, such as heat shock factor 1 (HSF-1), Hsp27 and Hsp70, which initiate anti-apoptotic cascades and promote drug resistance, a highly problematic property of any anticancer drug. In contrast, Hsp90 C-terminal inhibitors do not induce the heat shock response, and are therefore promising novel agents for treatment of different cancers.
  • 429
  • 09 Nov 2020
Topic Review
Antimicrobial photodynamic therapy (aPDT)
Photodynamic inactivation is known as a new antimicrobial photodynamic therapy (aPDT). It is based on the administration of a photosensitizer located in the bacterial/viral cell followed by exposure to light radiations (with a proper wavelength corresponding with the maximum value of absorption of the photosensitizer) that generate singlet oxygen or reactive oxygen species, which lead to the death of different microorganisms. This review will present an overview beyond the state-of-the-art of the photosensitizer types (based on tetra-p-sulphonated-phenyl porphyrin—TSPP, which is able to form cationic and J-aggregates forms at different pH values ((1–4) and concentrations around 10−5 M) and their applications of PDT for viruses, especially. 
  • 416
  • 30 Sep 2021
Topic Review
Ginger
Ginger in its many forms, from juices of the fresh rhizome, to ginger powder and ginger essential oil, is growing in popularity for claimed universal health benefits. Nevertheless, and contrarily to the common notion of the public, ginger is not devoid of side effects, especially interactions with other drugs, and many of the claimed benefits remain to be substantiated. 
  • 401
  • 17 Jun 2021
  • Page
  • of
  • 21
Top
Feedback